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ABSTRACT 

MINERALOGY AND GEOCHEMISTRY OF PLEISTOCENE VOLCANICS AT 

EMBAGAI CALDERA AND NATRON BASIN, TANZANIA: POTENTIAL 

CONSTRAINTS ON THE STRATIGRAPHY OF OLDUVAI GORGE 

 

by  

 

Steven Greenwood 

  

The University of Wisconsin-Milwaukee, 2014 

 Under the Supervision of Professor Lindsay J. McHenry  

 

 

 

 

Olduvai Gorge is a paleoanthropologically significant site on the shoulder of the East 

African Rift Valley of north-central Tanzania, hosting Pleistocene-aged hominid fossils 

and stone tools. Several volcanoes in the adjacent Ngorongoro Volcanic Highlands 

(NVH) have erupted volcanic material into Olduvai and other nearby sedimentary basins.  

 

Embagai (Elanairobi) is a Pleistocene caldera within the NVH. It is a potential source 

volcano for Olduvai tuffs, particularly for Bed II and younger deposits, as it is consistent 

in overall composition (nephelinite and trachybasalt) and general age. Nephelinitic and 

phonolitic lava and tuff samples were collected from the caldera floor and the western, 

eastern, and northeastern sides of the caldera. Common primary minerals included 

nepheline, clinopyroxenes, titanomagnetite, and andradite garnets exclusive to alkaline 

volcanic settings. Secondary alteration significantly affected the quality of the 

geochemical and mineralogical results, with analcime, phillipsite, and calcite as the 

dominant secondary minerals. Unaffected samples plot as nephelinites. The compositions 

of phenocrysts of augite, feldspar, and titanomagnetite sampled from both Embagai and 

the Olduvai beds were compared. High-Mg augite compositions from the northern rim 
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and western flank of Embagai are most similar to those of Olduvai Bed II. Feldspars are 

rare and distinctively K-rich in Embagai samples, which are dominated by nepheline 

compared to Olduvai tuffs. Overall, the mineral compositions and assemblage of 

Embagai appear to be a better match for a younger Olduvai Bed III tuff. 

 

The Pleistocene Peninj Group, exposed to the north of the NVH along the western margin 

of Lake Natron, is also paleoanthropologically important. It is comprised of the Humbu 

and Moinik Formations, which contain clastic sediments along with tephras and lavas 

likely associated with local eruptions from nearby volcanoes. The Main Tuff within the 

Humbu Formation is interlaid with the Wa Mbugu Basalt to the south of Peninj. This 

study compares the geochemistry and paleomagnetism of both well-constrained and 

unknown samples of the Wa Mbugu and other basaltic lavas in the vicinity to constrain 

the various units in this highly faulted and fragmented region. Samples were variably 

altered, with zeolites dominating the alteration assemblage. Geochemical results indicate 

that bulk major and minor elements alone are not enough to distinguish between some 

lavas of different stratigraphic positions but similar compositions, and would require 

further study using trace elements, phenocryst compositions, or other means. An oriented 

sample of the Wa Mbugu appears to indicate transitional polarity as opposed to the 

normal polarity commonly found with this unit. A second oriented lava sample had 

reversed polarity, however is not compositionally similar to the nearby Hajaro lava 

(reversed). This second lava may represent a previously undocumented flow.  
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With further study of both Embagai and the Natron basin lavas focusing on phenocryst 

mineralogy in unaltered samples, additional correlations could lead to a higher resolution 

inter-basin stratigraphic framework for the NVH and for the surrounding 

paleontologically and archaeologically important sedimentary basins.  
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1. INTRODUCTION 

 

The East African Rift Valley (Gregory Rift) has long been studied for both its 

geological and paleoanthropological importance (e.g. Reck, 1914a). Potential ancestors 

of modern humans resided in Northern Tanzania (~3°S) during a time of extensive 

volcanic eruptions originating from the rift-related Ngorongoro Volcanic Highlands 

(NVH), also known as the Crater Highlands (Figure 1).  Many of these eruptions have 

deposited ash and lavas into adjacent sedimentary basins, including Olduvai Gorge, 

Natron (preserved at Peninj), Laetoli, and Manyara (Hay, 1976; Dawson, 2008). As these 

locations have been exquisitely preserved and subsequently exposed by rift-related 

erosion, tectonics, and volcanism, several of these basins have been key to unveiling and 

understanding hominid evolution in Sub-Saharan Africa (e.g. Klein, 1999). The older 

volcanoes of the NVH have been well characterized and compared both compositionally 

and temporally to sites of paleontological and paleoanthropological interest including 

Laetoli and Olduvai (Mollel, 2002, 2007; Mollel et al., 2008, 2009, 2011; McHenry et al., 

2008).  

Olduvai Gorge preserves a record of tephra covering much of the last 2 million 

years of NVH activity, including rhyolites and trachytes from adjacent Ngorongoro and 

Olmoti volcanoes in Bed I, through Bed II nephelinites and recent carbonatites. Bed II 

and III tephra tend to be less continuous, exhibit higher levels of contamination, and are 

often finer grained than those of Bed I, and are thus more difficult to correlate and date. 

These tephra are consistent with a more distant nephelinitic source. The documented 

presence of nephelinites at Embagai, Loolmalasin, and Olsirwa volcanoes in the NVH 
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(Hay, 1976; Mollel, 2007; Dawson, 2008) make these potential volcanic sources for the 

Olduvai Bed II and younger tuffs.  

 

Figure 1. Map of region surrounding Olduvai Gorge. Olduvai tephra likely originated 

from the Ngorongoro Volcanic Highlands (NVH) to the east. The region sits at southern 

end of larger Gregory Rift (Eastern Rift Valley). Map after Hay (1976) and McHenry 

(2012a). Embagai sits within the NVH between Olmoti and Kerimasi volcanoes. The 

Natron basin lies to the north of the NVH. See Figure 2 for detail of Olduvai Gorge. 

This work characterizes the mineralogy and geochemistry of the less studied 

younger volcanic center Embagai (Elanairobi). It is located between the volcanoes of 

Olmoti (dated to ~1.8 Ma: McHenry et al., 2008) and Kerimasi (not dated radiometrically 
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but bracketed between 1.1 and 0.4 Ma based on its relation to episodes of faulting: Hay, 

1976). Prior studies of Embagai (e.g. Manega, 1993; Mollel, 2007) have not provided the 

level of mineralogical or geochronological detail needed to test whether it is a likely 

source for Olduvai Bed II or younger tuffs; better characterization of its mineralogy and 

geochemistry is necessary to test this.  

The Natron basin in far northern Tanzania is stratigraphically complex due to 

extensive faulting and weathering, particularly in the Type Section (Maritanane) of the 

Pleistocene Peninj Group (Luque et al., 2009). Fossiliferous sediments at Peninj 

accumulated in and around an ancient lake that was surrounded by a broad shallow basin 

(Isaac, 1967). Extensive faulting and alteration has led to some confusion when 

attempting to identify conformable geologic units, but several thick lavas can act as 

markers throughout this assortment of tephras and sediments. If correctly identified and 

dated, these basalts can help constrain the stratigraphy of these anthropologically and 

paleontologically important beds (Leakey and Leakey, 1964; McHenry et al., 2011). 

Of particular interest is the Main Tuff within the Humbu Formation, which 

contains the Wa Mbugu (Wambugu) basalt to the south of Peninj. The Humbu Main Tuff 

is a major marker bed within the Humbu Formation and is notable for the discovery of an 

australopithecine mandible below its base (Leakey and Leakey, 1964). This mandible can 

be tied to the Acheulian stone industry, characterized by a series of hand axes or ‘bifaces’ 

found in the Humbu Formation above the Wa Mbugu. The industry in Northern Tanzania 

is bracketed by the dates of both the Wa Mbugu basalt and the Intra-Moinik basalt above, 

within the Moinik Formation (Isaac and Curtis, 1974). The Intra-Moinik was dated by 

Isaac and Curtis (1974) at 1.33 and 1.38 Ma and was measured as having reversed 
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polarity (Thouveny and Taieb, 1986). The Wa Mbugu basalt has been dated from as early 

as 1.91 Ma to as late as 0.96 Ma, with a conservative median at 1.5 Ma (Luque et. al., 

2009), and has a documented normal paleomagnetic polarity previously attributed to the 

Olduvai N1 (Thouveny and Taieb, 1986), Jaramillo (Isaac and Curtis, 1974) or Cobb 

Mountain (Deino et al., 2006) normal polarity events. This wide range of potential ages 

makes it difficult to ascertain the age of the mandible, which could be the youngest 

example of Paranthropus boisei if the younger dates are accepted. 

This project complements ongoing research on the overall volcanic history of the 

NVH. This characterization helps to reconstruct a more complete volcanic history of the 

highlands and the paleontologically-rich basins (Olduvai, Natron, and Manyara) that 

surround them. Correlations between source volcanoes and tephra deposits and better 

constraints on the ages of these tuffs can help to construct a regional tephrostratigraphic 

framework.  

1.1 Objectives 

The objectives of this research project include:  

1. Characterize the mineralogy and geochemistry of Embagai caldera. 

2. Determine if Embagai is a likely source for Olduvai Bed II or younger tuffs. To test 

this, I acquired geochemical and mineralogical data for tuffs and lavas from Embagai and 

compared phenocrysts (e.g. pyroxenes, feldspars) from Embagai with those from Olduvai 

Bed II and III tuffs. Based on phenocryst compositions and bulk geochemical data, I will 

assess whether Embagai is a likely source volcano for these units, or whether a different 

source is required.  
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3. Characterize the geochemistry of various basaltic lavas from the Natron basin to help 

correlate units in this highly faulted area. Elemental data from basalt samples of known 

origin (Wa Mbugu, Hajaro, and Sambu) are used to identify geochemical signatures for 

each, and are then compared to western Natron basin basalts of less certain origin. I will 

address whether the Wa Mbugu Basalt can be distinguished from other basalts in the 

western Natron basin.  

4. Obtain paleomagnetic data from the Wa Mbugu Basalt and similar lavas. This new 

data is compared to previously published data for the region. 

1.2 Significance of project 

A better understanding of the petrology and geochemistry of Embagai can help 

reconstruct the evolution of the rift-related volcanism in the NVH, which is important for 

the interpretation of this unique volcanic system in East Africa. Identifying and 

characterizing lavas of differing compositions from multiple locations on a volcano can 

help establish the volcano’s eruptive history.  

Correlating volcanoes in the NVH with tephra at Olduvai can help reconstruct the 

eruptive history and magmatic evolution of these NVH volcanic centers. In addition, 

correlating between individual volcanoes and Olduvai tuffs could allow radiometric dates 

from the source to be applied to the distal and more altered and contaminated tuffs. 

Confirming the position of major lava units in the Natron basin also helps constrain the 

overall stratigraphy of the region, and helps refine the ages of these 

paleoanthropologically important beds. 
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2. GEOLOGIC BACKGROUND 

2.1 Olduvai Gorge 

The beds of Olduvai Gorge have been of great interest in the last century due to 

their paleontological, anthropological, and archaeological content (e.g. Reck, 1914a, 

1914b). Mary Leakey’s 1959 discovery of the famous “Zinjanthropus” skull, now 

attributed to Paranthropus boisei, made Olduvai world renowned in paleoanthropology, 

expanding our knowledge of early hominins and promoting the study of additional sites 

throughout east Africa (e.g. Klein, 2009).  

Olduvai is a ~20 km wide Pleistocene basin on the western margin of the East 

African Rift that has been incised by a gorge (Figure 2). The Olduvai river flows 

eastward from the Serengeti Plain and empties into the Olbalbal depression. The gorge 

has two primary branches, the Main Gorge which originates from Lakes Ndutu and 

Masek to the west, and the Side Gorge which meets up with the Main Gorge at the 

“Junction.” There is an ~100 m vertically exposed section of sediments and tephra within 

the gorge, with the igneous material likely originating from the adjacent Ngorongoro 

Volcanic Highlands (NVH) by either pyroclastic, fluvial, eolian, or mass movement 

processes. Remnants of an expanding and contracting Pleistocene saline paleolake 

(paleolake Olduvai) are seen throughout Beds I and II (Hay, 1976; Hay and Kyser, 2001; 

Ashley et al., 2010).  

The stratigraphic record of Olduvai consists of a series of numbered and named 

beds, from oldest to youngest: Beds I-IV, Masek, Ndutu, and Naisuisiu (Hay, 1976; 

Figure 3), with the base of the sedimentary record dated to around 2.0 Ma (Naabi 

Ignimbrite, Deino, 2012). Hay (1976) provides an extensive sedimentological description 
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of the beds. He subdivided the Olduvai succession and identified marker tuffs that allow 

for correlation between and relative dating of archaeological sites, and worked to 

determine the paleoenvironments of hominid activities. Bed I tuffs are widespread and 

have distinct mineralogical characteristics (Hay, 1976; McHenry, 2005, 2012a; McHenry 

et al., 2008, 2013). Olmoti volcano is the most likely source for most upper Bed I 

trachytic marker tuffs, based on age, texture, mineral assemblage, and mineral 

composition, and Ngorongoro caldera is a likely source for the lower Bed I rhyolites 

(McHenry et al., 2008).  

For Bed II, the stratigraphic framework is more difficult to constrain because of 

the lack of continuous marker tuffs and changes in thickness and lithology in these units. 

Bed II is the most laterally variable of the Olduvai Beds (Hay, 1976). Bed II is 

particularly important archaeologically as it records the cultural change from the 

Oldowan to the Acheulean stone tool technology (Hay, 1976; de la Torre et al., 2012). It 

is important paleontologically as it records a transition between humid-adapted and arid-

adapted taxa, along with the disappearance of Homo habilis and the appearance of Homo 

erectus (Leakey and Hay, 1982). It is important to know how and when these lithic 

cultures developed and thrived, and how they relate to the appearance of certain hominid 

species (de la Torre et al., 2012). However, Bed II tuffs are notoriously difficult to 

characterize, correlate, and date (McHenry et al., 2007; McHenry, 2012b), and their 

volcanic source is uncertain. Bed II will thus be the primary focus for this portion of the 

project. Bed III will also be briefly investigated as its marker tuffs are thought to fall 

within the age range of the study volcano, though it has not been studied as thoroughly as 

Beds I and II. 
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Figure 2. Map of Olduvai Gorge with inferred paleogeography. Modified after Hay and 

Kyser, 2001. Main branch of gorge, side gorge, and junction labeled. The NVH is located 

to west of the gorge.  
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Figure 3. Composite stratigraphic section of Olduvai Gorge with tuffs and major units 

identified. Beds denoted by color (Bed I: orange, Bed II: yellow, Beds III and IV: green, 

Masek, Ndutu, and Naisiusiu Beds: blue). Modified from Manega, 1993. Hominin data 

from Hay, 1976. 
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2.1.1 Olduvai Bed II 

Olduvai Bed II consists of the sediments between Tuff IF and Bed III (Figure 4). 

From base to top, Bed II can be divided into lowermost Bed II (largely similar to Bed I, 

dominated by a saline-alkaline lake and lake margin), the Lemuta Member (Eolian Tuff 

member, which includes Tuff IIA, the boundary between Lower and Middle Bed II), 

followed by a series of augitic sandstones and tuffs (including Tuffs IIB, the Birdprint 

Tuff, and Tuffs IIC and IID), interlayered with claystones and sandstones. As Bed II was 

being deposited, the local environment changed. At the base of Bed II lake and lake 

margin deposits dominate the record, and then a major disconformity associated with the 

Lemuta Member marks an environmental change that led to a decrease in the size of the 

Olduvai paleolake. This shrinkage coincides with a climatic shift from more humid to 

more arid conditions (Hay, 1976). 

The tuffs of Bed II are typically reworked and discontinuous. They can vary in 

content of tephra and in some cases are thus not even properly “tuffs.” Tuff IIA, for 

example, is locally a siliceous earthy claystone that contains about 10 percent mafic 

nephelinitic tephra (Hay, 1976). It is everywhere reworked and commonly contaminated. 

Where preserved, it is primarily mafic nephelinite with rock fragments, vitroclasts (with 

microphenocrysts of augite and minor nepheline, melilite, ilmenite, and perovskite), and 

augite crystals (Hay, 1976).  

Tuff IIB is only locally preserved in the “junction” and side gorge at Olduvai. It is mostly 

an orange-brown contaminated tuffaceous sandstone and siltstone, with widespread 

conglomerates. At one site, relatively pure mafic nephelinite tuff with biotite forms the 

lower two meters of Tuff IIB (Hay, 1976). 



www.manaraa.com

11 
 

 

 

Figure 4. Stratigraphic column of Olduvai Beds II, III, and IV showing general 

compositions of volcanic tuffs and lavas. Bed II background is in yellow, and Beds III 

and IV are in light green. The composition of each tuff or lava is shown in the diagram 

and in the legend. Multiple compositions (where specified) are represented by two 

colors/patterns. Compositional data is from Hay (1976). BPT = Birdprint Tuff. BTS = 

Brown Tuffaceous Siltstone.  
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The Birdprint Tuff (BPT) is a thin, fine- to medium-grained tuff found mostly in 

the junction and side gorge (Hay, 1976). Its high-Ca plagioclase help distinguish it from 

other Bed II tuffs (McHenry et al., 2011). 

Tuff IIC is an inconsistently preserved mafic vitric tuff and tuffaceous sandstone 

that is highly contaminated in most exposures. A tephrite composition is suggested by 

few crystals of plagioclase and nepheline in its vitroclasts (Hay, 1976). 

Tuff IID is a vitric trachytic tuff with a distinctive composition and lithology. 

Phenocrysts of anorthoclase, hornblende, augite, and rare nepheline suggest phonolitic-

trachytic composition. Rock fragments are dominantly trachyte and phonolite (Hay, 

1976). Its hornblende and augite phenocrysts are distinctively high in Ti and Mg, which 

could help establish region-wide correlations (McHenry, et al., 2011). 

Minor trachytic and basaltic tuffs occur locally in Bed II above Tuff IID (Hay, 

1976).  

Overall, Bed II and younger Olduvai tuffs are less continuous, finer grained, more 

reworked, and more contaminated than those of Bed I. With the exception of Tuff IID, 

none of the tuffs show evidence of surge or other near-source depositional features 

(McHenry, 2012b). In addition, there is a shift in the mineral assemblage from 

Ngorongoro rhyolites (Lower Bed I) and Olmoti trachytes (Upper Bed I) to an 

unidentified, likely more distal nephelinitic source (Bed II and more recent: McHenry 

2012a, 2012b). Recent efforts to characterize Bed II tuffs have shown that their augite 

compositions are more Mg-rich than those of Bed I tuffs and previously studied NVH 

volcanoes (McHenry et al., 2008, 2011; Mollel et al., 2009, 2011).  
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2.1.2 Olduvai Bed III 

Another possibility is that Embagai may have geochemical similarities with tuffs 

in Olduvai Bed III, which disconformably overlies Bed II. The majority of Bed III is 

reddish-brown volcanic detritus, which helps distinguish it from adjacent Beds II and IV 

in much of the gorge. Bed III is discontinuous, unlike Beds I and II, and is exposed over a 

much smaller area. Bed III tuffs are discontinuous; four vitric tuffs were identified within 

Bed III in the eastern part of the gorge (Hay, 1976).  

Tuff 1 (Tuff IIIA) is found near the base of Bed III, and is the most widely 

recognized Bed III tuff. It is a fine- to medium-grained gray to reddish-brown vitric 

trachytic tuff with pumice and sodic plagioclase, and is best exposed in the eastern gorge. 

Tuff 2 (Tuff IIIB) is a biotite-bearing gray to reddish-brown fine-grained vitric trachyte 

tuff, Tuff 3 (Tuff IIIC) is course-grained orange-brown vitric tuff containing augite, 

olivine, and palagonitized mafic scoria particles. Tuff 4 (Tuff IIID) is yellow to pink fine-

grained vitric tuff of trachyte or trachyandesite composition, with both plagioclase and 

anorthoclase with rare hornblende and augite. Two tuffs found in Bed III/Bed IV 

exposures to the north of Olduvai contain nepheline (Hay, 1976). 

2.1.3 Dating the Olduvai Beds 

Several Bed I marker tuffs have been dated using the 
40

Ar/
39

Ar method, and they 

range in age from 2.038 ± 0.005 to 1.803 ± 0.002 Ma (Figure 5, Naabi Ignimbrite to Tuff 

IF: Deino, 2012). The remaining beds have not been dated with such precision. Previous 

potassium-argon dating in Bed II proved to be unsatisfactory, either due to tuff 

reworking, contamination, or excess argon (Hay, 1976). Dates for Tuff IIA have included 

1.71 Ma (Curtis and Hay, 1972) and a range of other ages ranging from 1.66 ± 0.1 to 1.74 
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± 0.03 Ma (Manega, 1993), however it has not yet been possible to confirm this age, or 

even narrow down the range (McHenry et al., 2007; de la Torre et al., 2012).  

 

Figure 5. Schematic stratigraphy of Olduvai Gorge, showing principal beds and their 

depositional environment (Hay, 1976), paleomagnetism (Tamrat et al., 1995), main 

volcanic stratigraphic markers, their 
40

Ar/
39

Ar ages (Deino, 2012, except for lavas (green) 

by Walter, 1992), and the local stratigraphic extent of hominin taxa and artifact industries 

(Leakey and Hay, 1982). Modified after Klein (2009).  

The Olduvai normal event was first identified for a basalt in Bed I by Grommé 

and Hay (1963) and dated at 1.8 Ma (Evernden and Curtis, quoted by Hay, 1963). The 

top of the Olduvai normal event has been identified in the lower part of the Lemuta 

Member in Bed II (Hay, 1976). At present, the top of Bed II is only constrained by its 

presumptive correlation to a major regional tectonic event, dated elsewhere at between 

1.25 and 1.2 Ma (MacIntyre et al., 1974). The correlation is uncertain but should be 

tested with additional geochronological techniques (McHenry et al., 2007). The ages of 

Beds III and IV are only constrained by sedimentation rates or magnetic stratigraphy, 
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with the Brunhes-Matuyama (0.78 Ma) provisionally identified in lower Bed IV above 

Tuff IVB (Hay, 1976). Application of Berggren et al. (1995) dates for the end of the 

Olduvai event (previously 1.67 Ma, now 1.77 Ma) and the Brunhes-Matuyama transition 

(previously 0.73 Ma, now 0.78 Ma) would result in older ages for Bed II (i.e. 1.28 Ma for 

the Bed II/III transition and 1.35 Ma for Tuff IID: McHenry et al., 2007).  

However, Tamrat et al. (1995) proposed that the reverse to normal polarity 

transition recorded in Bed IV (N2) is the Jaramillo normal event instead. If this is the 

case, then the Bed II/III contact would be 1.34 Ma and Tuff IID would be 1.4 Ma, based 

on potentially unreliable sedimentation rates (McHenry et al., 2007). It should be noted 

that Tamrat et al. (1995) stated in regards to Hay’s (1976) “weak chronological argument” 

that “Paradoxically, the magnetostratigraphy of this well-known site remained badly 

resolved, mainly because Bed III and Bed IV yielded unreliable paleomagnetic results 

and were considered as completely remagnetized”. 

2.2 Ngorongoro Volcanic Highlands (NVH) and surrounding areas 

The Ngorongoro Volcanic Highlands (NVH), also known as the Crater Highlands, 

is a northeast-southwest trending elevated volcanic terrain that runs 90 km alongside the 

Salei Plain to the east of Olduvai Gorge (Dawson, 2008) (Figure 1, after Hay, 1976 and 

McHenry, 2012a; Figure 6, adapted from Luque et al., 2009). The NVH is the product of 

rifting along the eastern branch (or Gregory Rift) of the East African Rift System 

(EARS), adjacent to the boundary of the Tanzanian Craton and the Mozambique Belt 

(Dawson, 1992). Thick soil and vegetation on the eastern and southern sides of the 

Highlands make locating exposures difficult, thus making it difficult to establish the 

relative stratigraphy and age of the individual volcanic centers. 
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The NVH is dominated by the large caldera of Ngorongoro (olivine basalt, 

trachybasalt, trachyte; average K-Ar age of 2.40 Ma from plagioclase, 2.45 ± 0.15 from 

trachyte: Grommé et al., 1970; average K-Ar age of 1.94 Ma from ignimbrite: Manega, 

1993; 
40

Ar/
39

Ar ages of 2.25 ± 0.02 to 2.01 ± 0.02 Ma: Mollel et al., 2008) in the 

southwest and several peaks and calderas to the northeast. Notable volcanic centers 

include Ol Doinyo Lengai, an active natrocarbonatite volcano with its first eruptive 

activity at c. 22 Ka, and located on the northeast flank of the NVH (Dawson, 1962, 1964, 

2008), Olmoti, a Pleistocene caldera (
40

Ar/
39

Ar  ages of 2.01 ± 0.03 Ma to1.80 ± 0.01 

Ma: Mollel et al., 2009) considered a source of Upper Bed I tuffs (McHenry et al., 2008; 

Mollel et al., 2009), and Embagai, a Pleistocene caldera with a large saline lake and one 

of the focuses of this study (see Section 2.21 for more detail).  

Other volcanoes within the NVH include: 

 Kerimasi  – composition: nephelinite and phonolite, carbonatite at summit 

(Dawson, 2008); eruption age: bracketed between 1.1 and 0.4 Ma based on its 

relation to episodes of faulting (Hay, 1976).  

 Loolmalasin and Olsirwa – composition: basanite, basalt, trachyte, with 

mugearite boulders found in streams (Paslick, et al., 1995); eruption age: Pliocene 

(Dawson, 2008), preliminary 
40

Ar/
39

Ar  ages of ~1.4 to 1.3 Ma (Mollel and 

Swisher, 2012).  

 Oldeani – composition: olivine basalt, basalt, ankaramite, trachybasalt, trachyte 

(exposed some 15-30 km south of its summit, Orridge, 1965); Eruption age: 

Pliocene (Dawson, 2008), 
40

Ar/
39

Ar age from 1.61 ± 0.01 to 1.52 ± 0.02 Ma 

(Mollel et al, 2011). 
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 Lemagrut (Lemagarut)  – composition: olivine basalt, nephelinite, rare 

jacupirangite (Pickering, 1964); eruption age: Pliocene (Dawson, 2008), 
40

Ar/
39

Ar 

age from 2.40 ± 0.01 to 2.22 ± 0.10 Ma (Mollel et al., 2011).  

 Sadiman – composition: nephelinite, phonolite, melilitite, carbonatite; Eruption 

age: Pliocene (Dawson, 2008), 
40

Ar/
39

Ar dates of 4.63 ± 0.05 to 4.02 ± 0.02 Ma 

(Mollel et al., 2011). A possible source for the phonolitic and melilititic ashes of 

the > 4.3 – 3.5 Ma Laetolil Beds (Hay, 1978; Dawson, 2008; Mollel et al., 2011).  

 Loguwinywo – composition: basalt, nephelinite and nepheline-phyric phonolite; 

A previously unnamed mountain rising 300 m above the top of the rift escarpment 

on the eroded and incised eastern flank of Loolmalasin, between the peak of 

Loolmalasin and the village Kapenjiro (Dawson, 2008), in an area that locals call 

Loguwinywo (Greenwood personal communication, 2012).  

 

To the east and north of the Manyara-Natron fault escarpment and the NVH lie 

more Neogene volcanic centers that could act as potential sources, including: Burko 

(composition: nephelinite; eruption age: Pleistocene: average K-Ar age of 0.97 Ma 

(Evans et al., 1971)); Gelai (composition: alkali basalt-trachyte; eruption age: Pliocene 

(Dawson, 2008); Ketumbeine (composition: alkali olivine basalt and trachyte; eruption 

age: Pliocene (Dawson, 2008); nephelinite from small late parasitic cone named 

Lolgurdolgonja (Guest, 1953));. Engelosin, Mosonik, and Essimingor are also nearby, 

but are too old or possess compositions that are significantly different from Olduvai Bed 

II and above tuffs (Evans et al., 1971; Isaac and Curtis, 1974; Hay, 1976; Manega, 1993; 

Dawson, 2008; Mana et al., 2012). 
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Figure 6.  Detailed map of Ngorongoro Volcanic Highlands, with major volcanoes 

identified in relation to adjacent Olduvai Gorge and Lake Natron Basin. Embagai is 

highlighted in yellow. Modified after Luque et al., 2009.  
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2.2.1 Embagai caldera (Elanairobi) 

Embagai (Empakai) is an open caldera that sits within the Elanairobi volcano in 

the NVH, between Olmoti and Ol Doinyo Lengai (Figure 6). The Jaeger summit of the 

Elanairobi complex rises to 3235 m. Its caldera measures 6.8 (north-south) x 7.8 km 

(east-west), with the entire mountain 30 km across. Within the eastern part of the caldera 

lies Lake Embagai, a saline lake 3.5 km across and standing at 2209 m (Dawson, 2008).  

The lower parts of Embagai’s caldera walls have flows of trachybasalt, whereas 

the upper parts are nephelinite and aegirine phonolite. Limburgite (vesicular basanite 

high in augite and olivine but low in feldspar) flows occur at the base of the caldera 

walls. Small parasitic cones on the caldera floor contributed trachybasalt tuffs to the 

caldera floor and walls. Tuffs crop out on the western and northeastern outer slopes, and 

over the Jaeger summit. Finally, on the lower northern slopes, trachybasalt tuffs overlie 

flows of basanite, nephelinite, and olivine basalt at the gorge of Engare Sero (Figure 7: 

Guest et al., 1961; Dawson, 2008).  

Its composition has been more recently described as nephelinite and phonolite 

(foidite) (Mollel, 2007; Mollel et al., 2009). Petrographic analysis on four samples 

(Mollel, 2007) revealed that its lavas are phaneritic, porphyritic, and coarse to fine-

grained in texture. The nephelinites are Fe-rich, with FeO content ranging from 2.7-4.8 

wt% (Mollel, 2007). Mollel’s (2007) Embagai samples included nepheline, augite, 

andradite garnet, sphene (titanite), melilite, apatite, titanomagnetite, and rare amphibole. 

Using trace element geochemistry, Mollel (2007) highlighted High Field Strength 

Element (HFSE) ratios (e.g. Zr/Nb, Hf/Nb, La/Nb) that varied between different volcanic 
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centers in the NVH. He determined that Embagai shares geochemical similarities with 

nearby Engelosin and Satiman volcanoes, including high concentrations of Large Ion 

Lithophile Elements (LILE). His geochemical findings suggested derivation by relatively 

low degree partial melting of parent rock and that fractionation was among the processes 

that produced the Embagai lavas. Mollel’s (2007) Sr and Nd isotopic study concluded 

that all of the NVH lavas experienced varying degrees of crustal contamination.  

 

Figure 7. Geologic map of Embagai with units distinguished by color. Nvn (blue): 

nephelinite. Nvp (purple): phonolite. Nvf (yellow): mica-augite tuffs. Nvj (red): red 

scoria and tuffs (or agglomerate). Elevations are in feet. Base image from Guest et al., 

1961. 

Embagai has been radiometrically dated in two separate studies, summarized in 

Mollel and Swisher (2012). Manega (1993) dated three samples from the nepheline-

bearing lavas exposed along the caldera rim using the K-Ar method. These three samples 

yielded dates of 0.5 ± 0.14, 1.05 ± 0.02, and 1.52 ± 0.03 Ma, suggesting activity of 
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Embagai for about one million years. However, the young age of the first sample (0.5 ± 

0.14 Ma) is considered to be of poor precision because of its low radiogenic yield of 

4.2%. Manega (1993) also performed single crystal laser fusion on one Embagai tephra 

sample (same sample as the 1.52 Ma age), resulting in an age of c. 0.6 Ma. Mollel (2007) 

dated four samples from Embagai using the 
40

Ar/
39

Ar method, yielding ages from 0.81 ± 

0.02 Ma to 1.16 ± 0.04 Ma. This partially overlaps the previous age range reported by 

Manega (1993). Mollel also noted that the dates may have been affected by low 

temperature alteration of the samples, perhaps related to the loss of potassium from the 

rock.  

2.3 Natron basin/Peninj region 

The Natron basin (Figure 8) forms part of a long chain of tectonic basins that 

make up the Gregory Rift, the southern part of the eastern branch of the Great Rift Valley 

(Luque et al., 2009). It is located in a complex zone a few kilometers north of the 

Northern Tanzania Divergence Zone (Dawson 1964; Dawson and Powell, 1969), which 

gave rise to intense volcanism in the NVH area and the splitting of the eastern branch of 

the Rift Valley in three structural directions (Luque et al., 2009).  

The Peninj Group (Figure 9) is the primary Pleistocene sedimentary series 

exposed on the western margin of the Natron basin, and is now exposed mostly along the 

Moinik Ramp between Oldoinyo Sambu and Mozonik volcano. The most complete 

exposure of the Peninj Group is accessible at the Type Section (Maritinane) along the 

Peninj River (Isaac, 1967; Luque et al., 2009). The Natron basin and Peninj are in part 

famous for the discovery of an Australopithecus boisei (now Paranthropus boisei, Wood 

and Constantino, 2007) mandible at the base of the Main Tuff in the Peninj Type Section 
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(Leakey and Leakey, 1964). Oldowan and Acheulean stone tools are also found in Peninj 

sediments.  

Isaac (1965, 1967) first described the stratigraphy of the Natron basin, and subdivided the 

Peninj Group into the Humbu and Moinik Formations. Lavas at Peninj include the Sambu 

(derived from Oldoinyo Sambu) and the younger Hajaro basalts, both of which underlie 

the Peninj Group sediments, along with younger lavas in the Humbu and Moinik 

Formations (Luque et al., 2009). Paslick et al. (1995) analyzed flows of basanites, 

nephelinites, and picro-basalts at the south end of Lake Natron, but were unsure whether 

they originated from Sambu or Elanairobi (Embagai). Hay first determined the magnetic 

polarity of lavas west of Lake Natron using a portable fluxgate magnetometer (from 

Isaac, 1967). Isaac and A. Mussett subsequently collected a series of oriented samples 

that were studied by T. Reilly. The results were unpublished but were referenced by Isaac 

(1967). The underlying Sambu lavas recorded normal polarity, and Hajaro lavas between 

the Sambu lavas and the Humbu Formation recorded consistent reversed polarity (Isaac, 

1967). Isaac (1967) concluded that based on stratigraphy, paleomagnetism, paleontology, 

and archaeology, the Peninj Group was Middle Pleistocene, with the Humbu Formation 

possibly contemporary with the upper part of Olduvai Bed II. Luque et al. (2009) provide 

a detailed description of the geology of the Natron basin and Peninj area, building on 

previous work by Isaac (1965, 1967). 
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Figure 8. Map of the Natron basin, showing the extent of the Peninj Group and the 

locations of the Maritanane Type Section (TS), Sambu Escarpment, and Sanjan 

Escarpment. Figure after Luque et al., 2009. 
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Figure 9. Composite stratigraphic column of the Natron basin. Modified after McHenry 

et al., 2011, after Luque et al., 2009 and Isaac, 1965, 1967. Dating references included in 

figure. Paleomagnetics from Thouveny and Taieb, 1986; 1987; Tamrat, 1995. Black is 

normal, white is reversed. 
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The Main Tuff of the Humbu Formation acts as a stratigraphic marker. Along the 

southern Moinik Ramp along Lake Natron south of the Peninj Group Type Section, the 

Main Tuff contains a lava called the Wa Mbugu basalt. In the Type Section, the Wa 

Mbugu is absent from the Main Tuff (Luque, 2009). The Wa Mbugu basalt has been 

dated from as early as 1.91 Ma and as late as 0.96 Ma, with a conservative median at 1.5 

Ma (Luque et al., 2009). This is consistent with a previous K-Ar range of 1.4-1.6 Ma on 

an “olivine basalt” within the Humbu Formation as determined by Isaac (1965, 1967) and 

Curtis (1967). At that time, the Wa Mbugu was measured as normal polarity by Hay 

using a portable fluxgate magnetometer (from Isaac, 1967). Normal polarity was 

confirmed by paleomagnetic sampling and analyses (Isaac and Curtis, 1974; Thouveny 

and Taieb, 1986, 1987). It has been debated whether the Wa Mbugu fell within the 

Olduvai normal event (Isaac and Curtis, 1974; 1.67 to 1.87 Ma, Thouveny and Taieb, 

1986, 1987) or the Jaramillo normal event (1.053 ± 0.006 to 0.986 ± 0.005 Ma, Singer et 

al., 1999). If the younger Wa Mbugu dates are accepted, then the Jaramillo could be 

considered, thus making the hominin mandible and industry for that area much younger 

than originally thought. The brief Cobb Mountain normal event (1.12 ± 0.02 Ma; 

Mankinen et al., 1978; 1.190 - 1.215 Ma, Channell et al., 2002) has also been considered 

(Deino, 2006; Luque et al., 2009). It should be noted that the introduction of potassium 

during zeolitization could have affected the accuracy of the early K-Ar age dates, with 

the most heavily altered samples providing the anomalously young ages (Hay, in Isaac 

and Curtis, 1974). However, Deino’s (2006) single-crystal 
40

Ar/
39

Ar dates are also young, 

and should have been less affected by zeolitic alteration.  
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3. METHODS 

3.1 Field methods 

Lava and tuff samples were collected from Embagai caldera in 2012 (12EM01-15, 

shortened hereafter as EM01-15, Figure 10a) in areas previously sampled by Mollel 

(2007, Figure 10b) and in areas not previously studied, to acquire a more complete 

record of variation in composition for the volcanic center. The caldera floor (Figure 12), 

western flank (Figure 13), eastern rim (Figure 14), and northern rim (Figures 15 and 

16), and were chosen as sites for collection. Less than 1 kg was collected for each 

sample, where possible from fresh exposures. One additional Embagai sample (LM13-

T32, shortened hereafter as 13-T32) was collected in 2013 by McHenry on a fresh 

exposure of the eastern rim.  

Samples from the Natron basin were previously collected by McHenry between 

2007 and 2012 (Figure 11). In this thesis, samples of the Wa Mbugu, Sambu, and Hajaro 

Basalts are compared geochemically to unknown samples collected throughout the area, 

including the presumed source of the Wa Mbugu. This thesis also includes a 

paleomagnetic study of two basalt samples, one identified as Wa Mbugu and a second 

postulated to be either Wa Mbugu or Hajaro, to determine if they have normal (thus 

potentially attributable to the Olduvai, Jaramillo, or Cobb Mountain events) or reversed 

(Matuyama chron) polarity, constraining the age of these units. 
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Figure 10a. Google Earth map of Embagai with locations of sites. Sample locations 

cluster in four main areas: western flank (EM02-05), eastern rim (EM07-09 and 13-T32), 

northern rim (EM10-15), and caldera floor (EM01 and EM06). 
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Figure 10b. Google Earth map with Mollel’s (2007) samples added (EMB-X). Note 

general overlap in collection area in eastern rim, northern rim, and eastern caldera floor. 
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Figure 11. Google Earth map of the western Natron basin with locations of collection 

sites. Inset scales are 4 km long. Inset A details the Peninj Type Section (TS). Inset B 

details the Mtowabaga area and the area surrounding the hypothesized “Humbu source” 

volcano. 10-T21 and 10-T25 are oriented samples. Letters in parentheses refer to: S = 

Sambu, H = Hajaro, WM = Wa Mbugu. 
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3.1.1 Field details of Embagai 

Samples at Embagai were designated as EM followed by a number in order of 

collection. They are summarized in Table 1. Samples will be discussed here by location 

of collection.  

EM01 and EM06 represent the caldera floor parasitic cones that outcrop adjacent 

to Lake Embagai (Figure 12). These samples contain a dark gray matrix with euhedral 

hexagonal crystals of nepheline averaging 0.5-1 cm as observed in hand sample, and 

show some evidence of alteration. 

EM02-EM05 were collected at a previously unvisited location on a lower slope of 

the western rim (Figure 13). Heavy vegetation limited sampling to cattle trails. In the 

field, EM02 appeared light to dark gray and fine grained, and possessed a conchoidal 

fracture. EM03 was similar but also had secondary zeolite-filled vesicles.  

EM07-EM09 were primarily agglomeritic samples collected on the eastern rim of 

Embagai, along the main footpath to the caldera floor (Figure 14). EM07 possesses 

euhedral rectangular pyroxenes with a black vitreous luster, measuring about 1 mm 

across. EM08 contains dark blue phenocrysts in a dark matrix. Adjacent EM09 is a very 

fissile white tuff with phenocrysts. LM13-T32 (shortened hereafter as 13-T32), collected 

by McHenry in 2013, was found on a fresh exposure along the eastern rim wall, south of 

the remaining eastern rim samples. It possesses 1-5mm euhedral grains, without much 

evidence for alteration. Near this sample was a carbonate cave that exhibited flowstone.  
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Table 1. Embagai samples by collection location and type. 

 

EM10-EM14 are more crystalline samples collected on the northeastern rim, 

along an overgrown path leading to a communications tower (Figures 15 and 16); EM15 

was collected at the junction of this path and the caldera rim road.  EM15 is a brown-

orange tuff with 1 cm biotite plates observed in hand sample. Both EM10 and EM11 

were collected at the westernmost extent of collection on the northern rim. They are a 

mixture of agglomerate and crystalline rock, with nepheline phenocrysts present in the 

crystalline portion. EM12 is gray crystalline rock with fine grained phenocrysts 

measuring ~1mm. EM13 is a fine grained gray to white agglomerate with biotite sheets. 

EM14 is a very fine grained and fissile gray-yellow tuff with yellow lapilli. The outcrop 

at EM14 is dipping about 25° towards the northeast.  



www.manaraa.com

32 
 

 

 

Figure 12. Field photographs of the caldera floor and parasitic cones of Embagai. (A) 

McHenry samples one of the parasitic cones on the caldera floor. (B) EM01 exposed as a 

parasitic cone adjacent to Lake Embagai. Rock hammer for scale. (C) Detail on EM06 

hand sample shows euhedral nepheline mineralogy. Thumb for scale.  
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Figure 13. Field photographs of the western flank of Embagai. (D) EM02 as exposed on 

a cattle trail. Camera lens for scale. (E) EM03 as exposed on same trail. (F) EM04 farther 

down the trail displays conchoidal fracture. Rock hammer for scale. 
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Figure 14. Field photographs of the eastern rim of Embagai. (G) Detail on EM07 hand 

sample. Note the euhedral pyroxenes. Thumb for scale. (H) EM08 as exposed along 

primary access path to the caldera floor. Adjacent EM09 (not pictured) is a tuff, 

indicating emplacement by an explosive eruption. (I) 13-T32 as collected in field. Rock 

hammer for scale. (J) View of cave at 13-T32 location on eastern rim of Embagai. 

Window inset is equal in size to (K). (K) McHenry and field assistant Brendan Fenerty 

for scale. (L) Interior of cave exhibits flowstone features, consistent with carbonate. 
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Figure 15. Field photographs of the northern rim of Embagai. (M) EM10 in overgrowth. 

Jacob’s staff is 1.6 m tall. (N) EM11 with rock hammer for scale. Euhedral nepheline was 

observed in the field. (O) View of overgrown vehicle trail along rim, demonstrating lack 

of fresh exposures.  Maasai guide for scale. (P) Outcrop exposed below EM11. 

Greenwood for scale.  
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Figure 16. Field photographs of the northern rim of Embagai. (Q) EM12 with Jacob’s 

staff for scale. Staff is 1.6 m tall. (R) Detail on EM12. (S) EM13 showing agglomerate 

texture. (T) EM14 containing fine-grained yellow lapilli. Lapilli tuff is exposed at about 

25° angle to the northeast. (U) EM15 as tuff exposed on Embagai Rim Road at entrance 

to jeep trail. (V) Detail of EM15 shows biotite plates ~1 cm in diameter.  
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3.1.2 Field details of the western Natron basin 

Samples in this series are numbered according to year collected and order of 

collection. All samples were collected by McHenry. 

The base of the “definitive” Wa Mbugu basalt was sampled in 2010, at the base of 

the escarpment along the Engare Sero-Peninj road. There, the massive lava flow is 

constrained within the distinctively thick and orange Main Humbu Tuff (Figure 17A). 

Samples 10-T24 and 10-T25 were collected from the base of the flow (Figure 17B). 10-

T25 is an oriented sample collected for paleomagnetic analysis. The top was horizontal, 

and its orientation was determined using a Brunton compass. 10-T24 is a geochemical 

split of 10-T25. 

 

Figure 17. Field photographs of the Wa Mbugu basalt in the western Natron basin. (A) 

The Wa Mbugu lava south of the Peninj type section, constrained within the orange Main 

Humbu Tuff.  (B) Close-up of Wa Mbugu sample 10-T24 sampling site. Field assistant 

Simon Gerald and Jacob’s staff for scale. Jacob’s staff is 1.6 m tall. 

 

Sample 08-P13 likely represents the top of the Wa Mbugu (Figure 18D). It was 

collected a short hike from the Sale-Engare Sero escarpment road, from the top of a 

massive lava flow that made up the floor of its drainage. Up the Moinik ramp, along the 
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Sale-Engare Sero road, two basalts of uncertain stratigraphic position were collected from 

the top of a lava flow exposed in a stream bed. Sample 10-T21 and 11-T23 represent the 

same lava flow near the base of the section (Figure 15, C, and E). This lava underlies the 

Main Humbu Tuff, which is well developed at this site. Based on relative stratigraphic 

position and appearance it could reasonably be interpreted as either the Hajaro lava (in 

which case the lower part of the Humbu Formation is abbreviated) or the Wa Mbugu (in 

which case the lower part of the Main Humbu Tuff, which typically underlies the Wa 

Mbugu, is locally absent). An oriented sample (10-T21) was collected at the top of this 

lava. Its top was horizontal, and its orientation was measured using a Brunton compass. 

The second lava (sample 11-T24, Figure 18F) caps the overall section, which 

includes both the thick Main Humbu Tuff and an overlying thick section of green 

lacustrine sediments (with interlayered minor tuffs) that resembles the Moinik Formation. 

This lava could reasonably represent the Intra-Moinik Tuff.  The lavas represented by 

samples 11-T23 and 11-T24 are separated by tens of meters of continuous section. 

Samples 07-P21, 12-P3, and 12-P4 were collected atop and directly adjacent to 

the presumed source of the Wa Mbugu lava, an unnamed, small, eroded volcano near the 

top of the escarpment (Figure 20aI, J, Isaac, 1967). This volcano has exposures of 

coarse, steeply-dipping orange volcaniclastic materials, along with stacked (and heavily 

vegetated) lava flows. 07-T21 was collected at the summit (Figure 20aI), 12-P3 on the 

upper slopes (Figure 20bM, N), and 12-P4 from a flow emerging from the base of the 

cone (Figure 20aK, L). 
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Figure 18. Field photographs of unidentified lavas in the western Natron basin. (C) 10-

T21 (on ground), an oriented sample and possible Wa Mbugu basalt. Upper Main Humbu 

Tuff along wall in background. Scientist and Maasai scout for scale. (D) 08-P13, possible 

top of Wa Mbugu. Maasai scout for scale. (E) 11-T23, a duplicate of 10-T21 and likely 

Wa Mbugu. Rock hammer for scale. (F) 11-T24, a unit above 11-T23 and the Main 

Humbu Tuff, possibly representing the Intra-Moinik basalt. Field guide and rock hammer 

for scale. 
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Figure 19. Field photographs of identified lavas in the western Natron basin. (G) Sambu 

lava (07-P1) as outcrop at the Peninj Type Section. Backpack for scale. (H) Hajaro lava 

(07-P3) as outcrop. Backpack and rock hammer for scale. 

 

Sample 07-P3 represents the Hajaro lava (Figure 19H) and was collected at the 

Peninj Type section (Maritanane). Exposures in the area are poor and this sample was 

significantly altered, with zeolite-filled vesicles. The site was re-visited in 2011 to collect 

a cleaner sample: 11-T17 still has zeolites, but contains better-preserved phenocrysts and 

is less rotten. Sample 07-P1 represents the Sambu lava at the Peninj Type Section. The 

Sambu lava is massive here; it was sampled 125 cm from its base, above a notably 

vesiculated layer.  
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Figure 20a. Field photographs of lavas near a source volcano in the western Natron 

basin. (I) View of the hypothesized source volcano of the Wa Mbugu lava and the Main 

Humbu tuffs. (J) 07-P21 as exposed at the summit of the volcano in (I). Field notebook 

for scale. (K) 12-P4 as exposed at the foot of the source volcano. (L) A wider view of 12-

P4 showing surface coverage. Backpack for scale. 

 

Figure 20b. Field photographs of 12-P3 near the theorized Humbu source volcano. (M) 

12-P3 as exposed on upper slopes of the source volcano. Rock hammer for scale. (N) 

Detail on the 12-P3 outcrop. 
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3.2 Laboratory methods 

3.2.1 X-ray Fluorescence (XRF) 

To determine the bulk geochemical composition for rocks from both areas, 

samples were prepared for X-ray Fluorescence (XRF) analysis. Lava samples were 

broken down using a sledgehammer, whereas tuffaceous samples were crushed in mortar 

and pestle. About 10g of unweathered sample was further crushed in a Jawcrusher and 

finely powdered in a tungsten carbide shatterbox for four minutes to reach a silt-sized 

fraction. Powdered samples were coned and quartered to ensure a representative sample. 

Each sample was dried overnight in an oven at 105°C.  

Loss on ignition (LOI) was performed on a precisely weighed subsample (~1g) of 

each sample to determine the amount of water and other volatiles lost during the fusion 

process. This involved placing a known weight of sample into a crucible, weighing it on a 

balance, placing the crucible and sample into a Thermolyne muffle furnace for fifteen 

minutes at 1050°C, cooling it in a desiccator, and finally weighing the material and 

crucible after ignition. The calculated LOI value is used for XRF corrections and to 

assess the degree of alteration.  

For fusion, 1.000 g of each sample was weighed using an analytical balance, 

combined with 10.000 g of a 50:50 ratio of lithium metaborate/tetraborate flux with an 

integrated LiBr nonwetting agent and ~1 g of an ammonium nitrate oxidizer, and fused 

into a glass bead using a pre-programed routine on a Claisse M4 Fluxer with a maximum 

temperature of ~1050°C. These beads were then analyzed using a Bruker S4 Pioneer 

Wavelength Dispersive XRF spectrometer. A calibration curve made up of eleven USGS 

igneous and sedimentary rock standards was used, previously created using the same 
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methods as the unknowns (McHenry, 2009). Major elements (SiO2, TiO2, Fe2O3, MgO, 

MnO, Na2O, CaO, K2O, and P2O5) were analyzed along with some minor and trace 

elements (Y, Nb, V, Zn, Ni, Cr, Sr, and Ba). Only those values that met or exceeded 

twice the calculated Lower Limit of Detection (LLD) with analytical errors of less than 

12% (for trace elements) are reported. Microsoft Excel was used for data manipulation, 

and IgPet 2010 was used for data plotting. 

3.2.2 X-ray Diffraction (XRD) 

To determine the degree of alteration, samples from Embagai were analyzed for 

LOI and prepared for X-ray Diffraction (XRD) following the methods of McHenry 

(2009). A split of the samples powdered for XRF analysis (methods as above) was 

ground to a finer grain size using a McCrone micronizing mill. These samples were air 

dried and mounted as random powders for XRD. Samples were analyzed using a Bruker 

D8 Focus XRD (CuKα tube, 1 s per 0.02° 2θ, over the range 2-60 2θ, Sol-X energy 

dispersive detector) with the XRD Commander program, and results analyzed using 

Bruker’s EVA program. Diffraction patterns were matched against the International 

Center for Diffraction Data (ICDD) Powder Diffraction File (PDF 2) for phase 

identification.  

3.2.3 Electron Probe Microanalysis (EPMA) 

Polished petrographic thin sections of nine Embagai samples (EM01, 02, 03, 05, 

06, 08, 11, 12, and 13) were prepared at Spectrum Petrographics and analyzed using a 

petrographic microscope. Images were taken using a microscope-mounted camera and 

captured with MagnaFire. 
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For analysis of phenocryst compositions, four (EM02, 03, 06, and 11) of the nine 

polished thin sections were selected for electron probe microanalysis (EPMA). These 

were supplemented by grain mounts of target minerals (e.g. feldspar, augite, 

titanomagnetite, perovskite) for samples EM04, 07, 09, 10, 14, and 15. Grain mounts 

were prepared following the methods of McHenry (2005), which involved gently 

crushing a sample to a sand-sized fraction, sieving into meshes of 40+ (greater than 0.42 

mm), 40-60 (0.42 – 0.25 mm), and <60 (<0.25 mm). The 40-60 component was placed in 

a Teflon beaker and soaked for ~1 minute with 4% HF in a sonic bath. If the sample 

continued to effervesce after one minute of HF treatment, the sample was decanted, 

rinsed three times with deionized (DI) water, and treated with 10% HCl or HNO3 until 

the effervescence stopped, then rinsed in DI water three more times. This process was 

repeated until there was no sign of effervescence. Samples were then poured into a 

ceramic drying dish and dried under a heat lamp. The HF-treated fraction was then hand-

picked for grain mounts under a microscope. The mounts themselves were flat cylinders 

of plastic that were drilled with 10-15 holes. Each drill hole held one sample’s 

phenocrysts, including augite, feldspar, hornblende, micas, titanomagnetite/ilmenite 

(oxides), and perovskite. Phenocrysts were mounted to a taped surface and covered in 

epoxy. After the epoxy set, the mounts were polished and photographed for reference.  

Thin sections and grain mounts were carbon coated to prevent charging of the 

samples and analyzed using a Cameca SX51 electron microprobe at the University of 

Wisconsin-Madison following the methods of McHenry et al. (2008). Energy dispersive 

spectrometry (EDS) was used to identify minerals and determine what elements needed 

to be measured using wavelength dispersive spectrometry (WDS). Elements measured 
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include SiO2, TiO2, Fe2O3, Al2O3, MnO, MgO, CaO, Na2O, and K2O. High-quality 

results were obtained for: 79 augites (pyroxenes), 8 feldspars, 47 nephelines 

((Na,K)AlSiO4), 37 oxides (titanomagnetites or ilmenites), 9 biotites, 15 titanian 

andradite garnets (melanite or schorlomite: (Ca3(Ti,Fe
3+

)2((Si,Fe
3+

)O4)3), 9 perovskites 

(CaTiO3), and 9 sphenes (CaTiSiO5, titanite). Individual phenocryst compositions for 

Embagai are reported in Appendices A-G. 

Augite, biotite, andradite, perovskite, and sphene phenocrysts were measured at 

20 nA, 15 kV, and a 5 micron beam. Feldspar and nepheline phenocrysts were analyzed 

at 10 nA, 15 kV, and a 5 micron beam. Oxides were analyzed at 20 nA, 15 kV, and a 

focused beam (though oxides from Bed III were analyzed at 10 mA, 15 kV, and a focused 

beam). Data from this thesis and comparisons was plotted using the RockWare IgPet 

program. 

3.2.4 Paleomagnetic methods 

Samples 10-T21 (Hajaro or Wa Mbugu) and 10-T25 (definitive Wa Mbugu) were 

each drilled to create two 1” inch cores. Each core was cut in half to allow for duplicate 

measurements. Cores were reoriented using a Pomeroy orienting device with sun 

compass. Orientation measurements are given in Appendix H. 

Paleomagnetic demagnetization was performed with an ASC TD-48 Thermal 

Specimen Demagnetizer and a Schonstedt Model GSD-1 alternating field (AF) 

demagnetizer. AF demagnetization was carried out in steps between 2.5 mT and 100 mT 

(peak alternating field).   
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Thermal demagnetization was carried out in 100°C steps between 100°C and 

500°C. It should be noted that one set of heating elements in the oven was disabled, thus 

the temperatures that the samples experienced were slightly different from the set point. 

At low set points, actual temperature was very close to the set point.  This was tested at 

149°C (actual temperature).  The temperature discrepancy increased with increasing set 

point.  At a set point of approximately 490-500°C, the actual temperature was 538°C.  

These temperature discrepancies do not change the interpretation of the results. 

During thermal demagnetization, samples 10-T21-1 and 10-T25-1 fractured into 

two or more pieces at temperatures of 400-500°C, perhaps due to pressure build-up from 

dehydration or water release of zeolitic material. The specimens were pieced back 

together using potassium silicate, and measurements were continued.   

Magnetization was measured on a Molspin Minispin magnetometer using the 

Molmac program provided by Jeff Gee. The MacPaleomag2.1 program, also provided by 

Gee, was used to plot data and to calculate the best-fit principal component direction and 

the maximum angular deviation (MAD) (Kirschvink, 1980). A declination (dec) of 

~0°/360° generally represents normal polarity whereas ~180° represents reverse polarity. 

The angle from the horizontal plane is the inclination (inc), measured +90° for straight 

down to -90° for straight up (Tauxe, 1998). 

Susceptibility as a function of temperature, χ(T), was measured to constrain Curie 

temperatures (TC), the temperature above which a mineral loses its ferromagnetic 

behavior. Measurement of the Curie temperature aids in identification of predominant 

magnetic minerals. The two most common magnetic oxides have very well-defined TC: 
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magnetite at 580°C and hematite at 680°C (Petersen and Bleil, 1982), though Ti 

substitution will lower the TC  (Tauxe, 2014). A small amount of sample was powdered 

using a shatterbox to coarse sand size and then placed into a quartz tube and placed in the 

furnace attachment of an AGICO MFK1-FA Multi-Function Kappabridge. The sample 

was heated at a constant rate (11.8°C min
-1

) from 40°C to 600 or 700°C and back to 

40°C. Measurements were taken approximately every 20 seconds. 

At the point that a sample reaches and exceeds TC, the sample loses its 

ferromagnetism, and as a result magnetic susceptibility will decrease abruptly. TC may be 

identified by the inflection point in the χ(T) curve, and a peak in the first derivative of the 

χ(T) curve was thus taken to estimate the TC of the sample (Fabian et al, 2013). 

Depending on the magnetic mineralogy of the sample, new magnetic minerals may begin 

to form or destruct at any time and these changes may also be represented as inflections 

in the susceptibility curve.  The program CurveEval 6 was used to evaluate these curves. 
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4. RESULTS: EMBAGAI 

4.1 Bulk geochemical composition  

Most Embagai lava samples had high loss on ignition values, indicating alteration. 

The presence of calcite and/or zeolites in a majority of the collected samples is consistent 

with high LOI values and lower concentrations of Si, which is being diluted. Thus, only 

samples with LOIs of less than 7% are used for the bulk geochemical plots (Tables 2.1 

and 2.2). Two samples representing the caldera floor (EM01) and western flank (EM05) 

plot within the foidite region of a Total Alkali-Silica diagram (Figure 21, after Le Bas et 

al., 1986). The second caldera floor sample (EM06) and eastern rim (T32) plot within the 

tephri-phonolite field. One northern rim sample (EM12) plots as phono-tephrite, whereas 

a second (EM15) is tephrite or basanite. Of all of the sampled areas, the caldera floor 

samples were the most geochemically consistent. 
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Figure 21. Total Alkali versus Silica classification after Le Bas et al. (1986) for the least 

altered (LOI < 7%) Embagai samples. Most samples plot in the foidite 

(nephelinite/melilitite) region, with some tephra-phonolite, phono-tephrite, and tephrite.  

 

 

Table 2.1. Embagai X-Ray Fluorescence major element compositions. EM02 was 

removed since it was mostly calcite, and our calibration is based on silicates and thus not 

reliable for this kind of sample. Values are in wt. %. LOI values are included in the totals. 
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Table 2.2. Embagai X-Ray Fluorescence minor element compositions. Values are in 

parts per million (PPM). Only values that met or exceeded twice the Lower Limit of 

Detection (LLD) are reported.  

 

Major elements (AlO2, Fe2O3, TiO2, CaO, MgO, and NaO2) were plotted against 

SiO2 for the seven least altered Embagai samples to show large-scale trends between 

them (Figure 22). Of note is a strong negative trend when plotting SiO2 vs. Fe2O3, 

indicating high iron concentration in samples with lower Si. Figures 19 A and F show 

increases in both Al and Na with respect to Si. Figures 19 C and E show decreases in Ti 

and Mg with an increase in Si.  
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Figure 22. Plots of major elements vs. SiO2 for the least altered Embagai samples. (A) 

SiO2 vs. AlO2, (B) SiO2 vs. Fe2O3 shows a strong negative trend, indicating that iron is 

more concentrated in the lower-Si samples, (C) SiO2 vs. TiO2, no discernable trend, (D) 

SiO2 vs. CaO shows a negative trend, largely due to the addition of calcite, (E) SiO2 vs. 

MgO shows a slight negative trend similar to iron, and (F) SiO2 vs. NaO2 shows a 

positive trend.  
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4.2 Mineral assemblages 

The occurrence of minerals determined using XRD and electron microprobe 

observations is given in Tables 3.1 (primary) and 3.2 (secondary). XRD analysis of the 

sixteen samples confirms that samples with high LOI values have abundant zeolites or 

calcite. Samples dominated by zeolites or calcite were EM02, 03, 05, 07, 10, 11, and 13. 

Examples of zeolites identified include analcime (Na2(Al2Si4O12)·2H2O), phillipsite 

((Na,K,Ca0.5,Ba0.5)4-7[Al4-7Si12-9O32]·12H2O), and chabazite (including Na-rich chabazite: 

(Na2,K2,Ca,Sr,Mg)2[Al2Si4O12]2·12H2O). Samples EM04, 06, 08, 14, and 15 had 

abundant zeolites along with the primary minerals. Samples EM01, 09, 12, and 13-T32 

were relatively unaffected by zeolitization, containing mostly primary magmatic 

minerals. 

 

Figure 23. Example of Embagai nephelinite diffraction pattern, for sample EM01. The 

pattern is smoothed and background subtracted. The primary mineral assemblage 

includes nepheline and augite, with titanomagnetite and perovskite.  
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Figure 24. Example of Embagai zeolite diffraction pattern, for sample EM03. The 

pattern is smoothed and background subtracted. The primary mineral assemblage 

includes nepheline and augite, with schorlomite (andradite) garnet. The secondary 

mineral assemblage includes orthoclase (K-feldspar), calcite, and the zeolite minerals 

analcime and phillipsite. 

 

Primary magmatic minerals that appeared throughout the samples include 

nepheline, K-feldspar (KAlSi3O8), anorthite, various augites, and the garnets andradite 

and schorlomite. Titanian andradite and schorlomite are of note as they are found 

exclusively in alkaline igneous rocks such as phonolites, nephelinites, and ijolites (Deer 

et al., 1992). There is also rare amphibole, melilite, mica (biotite or muscovite), 

perovskite (CaTiO3), and ilmenite. Sodalite (Na8(Al6Si6O24)Cl2) was present in two 

samples. 
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Table 3.1. Primary mineral assemblages at Embagai sorted by sample location and LOI. 

Frequency symbols: xxx = abundant, xx = common, x = between rare and common, + = 

rare, - = absent, ○ = identified by electron microprobe but not observed by XRD. 
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Table 3.2. Secondary mineral assemblages at Embagai sorted by sample location and 

LOI. Frequency symbols: xxx = abundant, xx = common, x = between rare and common, 

+ = rare, - = absent, ○ = identified by electron microprobe but not observed by XRD. 

 

The mineral assemblages from the Embagai samples (Tables 3.1 and 3.2) were 

compiled to compare the degree of alteration between samples. EM02, 07, 10, and 13 had 

the highest LOIs (>10%). Calcite was dominant in these samples with high LOIs, as CO2 

is lost during ignition.  Analcime was also a major mineral in altered samples, though it 

also appeared in relatively fresh samples. Phillipsite was abundant in samples from the 

western flank and some from the northern rim. K-feldspar was observed in most northern 
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rim samples and two of the eastern rim samples. EM07 contained K-feldspar, as observed 

by microprobe. The K-feldspars in these samples is potentially authigenic, the result of 

phillipsite alteration (McHenry, 2009). 13-T32 is one of the least altered samples, thus its 

K-feldspar (as detected by XRD) is most likely magmatic. Some clay minerals were 

present, mostly in samples from the northern rim and the western flank.  

Analysis of thin sections combined with the XRD results helps characterize the 

overall mineralogical abundances and assemblages. Four (EM02, 03, 06, and 11) of the 

polished thin sections were selected for electron probe microanalysis (EPMA). 

The minerals observed in thin sections EM01 and 06 (Figures 25 and 26), both 

representing the caldera floor, are consistent with the XRD results. In thin section, both 

display euhedral nepheline crystals as the dominant phenocrysts. Samples EM01 and 06 

also display elongated minerals with strong 2
nd

 order birefringence (blue-red) consistent 

with pyroxene. EM06 contains analcime, identified in thin section and by XRD. In thin 

section, analcime is roughly euhedral and spheroidal. Rare amphibole occurs in eastern 

rim sample EM08 (Figure 27), displaying well developed cleavage planes and zoning. 

Additional second-order red-violet-blue clinopyroxenes also appear in this sample. 

The minerals observed in the EM02 thin section are also consistent with the XRD 

data, dominated by highly birefringent calcite (Figure 28).  
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Figure 25, previous page. Thin section of caldera floor sample EM01. A 4X objective 

was used for images A, B, E and F. A 10X objective was used for images C, D, G, and H. 

Crystals average 1 mm across. (A) Plane polarized view (PPL) of general mineralogic 

texture. (B) Cross-polarized (XPL) version of view (A). Phenocrysts are dominated by 

euhedral crystals of nepheline (first order gray) with occasional first-second order red-

orange clinopyroxenes. (C) Detail on (B) of nepheline and clinopyroxene minerals. Note 

the zoning within the nepheline. (D) XPL view of fractured nephelines that display 

hopper-like growth, indicating fast growth. (E) CPL view of possible clinopyroxene 

displaying undulose extinction. (F) Same view as (E) but rotated to show extinction. (G) 

Detail on (E) showing a bullseye pattern. (H) PPL view of (G). Color is light brown, 

consistent with clinopyroxene.  

 

 

Figure 26. Thin section of caldera floor sample EM06. Large crystals average 1 mm 

across. A 4X objective was used for images A, B and C. A 10X objective was used for 

image D. (A) PPL view of elongated clinopyroxene surrounded by nepheline and 

spheroidal analcime. The largest clinopyroxene is 3.5 mm long. (B) Same view in XPL. 

The clinopyroxene phenocryst displays high order birefringence (1
st
 order blue). (C) The 

previous clinopyroxene under extinction, as shown in XPL. (D) XPL view of typical 

nepheline in this sample. 



www.manaraa.com

59 
 

 

 

Figure 27. Thin section of eastern rim sample EM08. 4X objective used for images A, B, 

D, and F. A 10X objective was used for images C and E. (A) View in PPL of rare 

amphiboles. Large crystal measures 1 mm across. Note crystal zoning and diagnostic 

cleavage angles. The phenocryst is light brown in PPL. (B) Same view in XPL displaying 

second order yellow. (C) Detail of (B). The surface displays zoning and cleavage planes. 

(D) Another view of zoning texture and a second amphibole. (E) Likely clinopyroxene 

displaying second order red-violet. (F) Another clinopyroxene with first-second order 

blue to yellow. 
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Figure 28. Thin sections of western rim samples EM05 (A-B) and EM02 (C-F). A 4X 

objective was used for all images except E, which uses 10x objective. (A) View in XPL 

of first order gray nephelines and first order gray elongated feldspar. (B) Crystal feature 

located on edge of sample.  The core of the feature contains highly birefrigent calcite. 

Feature measures 2 mm across. (C) View in PPL of the general texture of the calcite-rich 

matrix. (D) Same view in XPL, displaying blue crystal form measuring 0.5 mm across. 

(E) Detail of (D). (F) Additional pyroxenes embedded in calcite-rich matrix. 
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Figure 29, previous page. Thin sections of northern rim sample EM12. A 4X objective 

was used for images A, B and G. Images C-F and H used a 10x objective. (A) View in 

XPL of euhedral analcime and surrounding nephelines. (B) Same view as (A) in XPL. 

The euhedral grain is isotropic. (C) Nepheline crystals in PPL exhibiting porous and 

fibrous textures. (D) Same view as (C) in XPL. (E) High relief mineral in PPL. (F) Same 

view as (G) in XPL. (G) A possible anhedral amphibole is light green-brown in PPL, and 

(H) orange-brown in XPL with zoning. 

 

Sample EM12 was dominated by nepheline and had moderate amounts of 

analcime. Porous and fibrous textures were noted in some of the nepheline grains. Rare 

amphibole was identified in the sample. 

The bulk composition and mineral assemblages of the samples analyzed in this 

study confirm that Embagai is predominantly nephelinitic, since the fresher lavas consist 

predominately of nepheline and clinopyroxene (QAPF field 15c, foidite with nepheline, 

Le Maitre et al., 2002). 

4.3 Phenocryst composition 

Embagai augites (or other members of the clinopyroxene group) are highly 

variable in composition (Table 4.1). Most clinopyroxenes plot along the solid solution 

between iron and magnesium (FeO vs. MgO, Figure 30a). The majority of the Embagai 

augites contain between 1 and 3 wt% Na2O, however a handful are higher than 3 wt% 

and are thus more omphacitic (Figure 30b, Deer et al., 1992). Embagai augites are not 

especially titanium-rich, with most between 0.5-2 wt.%, especially those from the caldera 

floor (Al2O3 vs. TiO2, Figure 30c). When plotted on a FeO vs. MgO vs. CaO ternary plot 

(Figure 30d), Embagai augites from different locations continue to overlap and follow a 

similar FeO-MgO trend as in Figure 15a, though a few sodic augites are removed from 

the main trend. 
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Table 4.1. Embagai augite composition averages and standard deviations, as measured by 

EPMA. N = number of grains analyzed.  

 

Table 4.2. Embagai feldspar averages and standard deviations, as measured by EPMA. 

Feldspars are K-rich. Note the higher Ba in western flank samples.  Feldspars are more 

Fe-rich on the eastern rim. 
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Table 4.3. Embagai titanomagnetite/oxide averages and standard deviations, as measured 

by EPMA. Titanomagnetites are more titaniferous on the eastern rim. 

 

Figure 30a. Embagai augite phenocryst composition: FeO vs. MgO. Embagai augites are 

highly variable, plotting along the solid solution between Mg-rich and Fe-rich end 

members.  
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Figure 30b. Embagai augite phenocryst compositions: FeO vs. Na2O. Most augites have 

sodium levels of 1-3 wt%. Those greater than 4 wt% may be omphacitic pyroxenes. 

 

 

Figure 30c. Embagai augite phenocryst compositions: Al2O3 vs. TiO2. All Embagai 

augites are below 3 wt% TiO2, and thus not considered titanian augites. Most augites, 

especially those from the caldera floor, plot between 0.5-2 wt.% TiO2. 
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Figure 30d. Embagai augite phenocryst compositions: FeO vs. MgO vs. CaO ternary 

plot. All locations overlap. Augites continue to follow solid-solution series from MgO to 

FeO. Some of the most Fe-rich augites are sodic, explaining their offset from the main 

trend.  

 

K-rich feldspars were observed in both heavily and less altered samples (Figure 

31, Table 4.2), with LOIs ranging from 1.69 to 21.08%. K-rich feldspars were also 

identified by XRD in some samples. For the samples analyzed by microprobe, K-feldspar 

only appeared in highly altered samples (LOI 11.56%, 18.97%, and 21.08%). Based on 

this relationship, and the presence of the K-rich zeolite phillipsite in two of the three 

samples (Table 3.2), it can be postulated that this K-feldspar is secondary, since 

authigenic K-feldspar can form from phillipsite under saline-alkaline conditions (e.g. 
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McHenry, 2010). The K-feldspar in the less altered sample 13-T32 is, however, likely 

primary. 

Nepheline compositions overlap between different parts of Embagai, as observed 

in plots of Al2O3 and SiO2 versus Na2O (Figure 32), with the northern rim and caldera 

floor overlapping within the field of the eastern rim. The western flank was the most 

distinct of the Embagai samples in nepheline composition, with lower Na2O and wider 

ranges of SiO2 and Al2O3. 

Oxides (titanomagnetite, ilmenite) within Embagai have well-defined populations 

depending on the collection site (Figure 33, Table 4.3). The caldera floor and eastern rim 

both have populations that cluster, whereas the western flank and northern rim have more 

variation in composition.  

Andradite garnets have a trend of increasing TiO2 with increasing Na2O (Figure 

34). Embagai garnets trend towards schorlomite (> 15 wt.% TiO2, Deer et al., 1992) 

along the western flank and the northern rim.  

Sphene (titanite) compositions are more variable (Figure 35), with some 

clustering of caldera floor and eastern rim sphenes. Sphenes were not identified in 

western flank samples.  
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Figure 31. Ternary diagram of Embagai feldspars. Embagai feldspars are K-rich and 

rare, only preserved in three of the samples analyzed by microprobe (EM03, 07, 10; 

western flank, eastern rim, and northern rim respectively).  
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Figure 32. Embagai nepheline compositions: (A) SiO2 vs. Na2O and (B) Al2O3 vs. Na2O. 

The eastern and northern rim nephelines are less variable in composition.  
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Figure 33. Oxides: TiO2 vs FeO. Titanomagnetite compositions from Embagai’s caldera 

floor and eastern rim are tightly clustered. The northern rim and western flanks of 

Embagai are more spread out.  

 

Figure 34. Embagai andradite garnets, showing a generally positive trend between TiO2 

and Na2O. Both the western flank and northern rim of Embagai have Ti-rich schorlomite 

(garnets with > 15 wt. % TiO2, Deer et al., 1992).  
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Figure 35.  Embagai sphene (titanite): No consistent trend is observed between TiO2 and 

CaO. No sphenes were identified in the western flank samples. 
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5. RESULTS: NATRON BASIN 

5.1. Bulk geochemical composition  

Tables 5.1 and 5.2 detail the bulk geochemical compositions of the Natron basin 

samples previously described in Section 3.1.2. Most samples plot as basalts on a Total 

Alkali-Silica (TAS) diagram (Figure 36a and 36b, after Le Bas et al., 1986), with some 

as trachybasalts. The Hajaro samples are less sodic than the Wa Mbugu basalts or the 

Sambu trachybasalts. The major elements of western Natron basin basalts were plotted to 

help establish relationships between the known samples and the questionable or unknown 

samples (Figure 37). One relationship that can be seen is between the definitive Wa 

Mbugu sample 10-T24 and the questionable Wa Mbugu candidate 08-P13. In the TAS 

diagram, 10-T24 and 08-P13 appear to possess similar bulk chemistry. This relationship 

is further strengthened by overlap or close proximity between the two samples indicating 

that 08-P13 is consistent with Wa Mbugu basalt.  

Sample 07-P21, collected from a flow at the summit of the presumed source of 

the Wa Mbugu lava, is compositionally distinct from the established Wa Mbugu sample. 

Samples 12-P3 and 12-P4, collected on the slopes and base (respectively) of the same 

presumed source volcano, are similar in composition to 07-P21 and also compositionally 

distinct from the Wa Mbugu. Samples 11-T23 and 11-T24, collected from near the base 

and top of a thick and continuous section of the Humbu Formation, were compositionally 

indistinguishable, indicating that bulk major and minor elements alone are not sufficient 

to develop unique geochemical fingerprints for individual lava flows.  
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Figure 36a. Total Alkali-Silica (TAS) diagram of Natron samples (Le Bas et al., 1986). 

Most samples plot as basalt, with some trachybasalt. See Figure 36b for detail. 

 

Figure 36b. Detail on TAS diagram (36a), showing similarity between samples. 

Samples10-T24 (Wa Mbugu) and 08-P13 overlap. 07-P21 is removed from remainder of 

samples. 07-P1 (Sambu) plots as a trachybasalt.   
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Figure 37. Plots of major element concentrations of Natron basalts. Plots of (A) Fe2O3 

vs. SiO2, (B) Al2O3 vs. SiO2, (C) Fe2O3 vs. TiO2, and (D) Al2O3 vs. TiO2. Known 

samples Wa Mbugu (WM), Sambu, and Hajaro are identified, as are the three samples 

from the supposed “source volcano” (S:T = Source?: Top, S:S = Source?: Slope, S:B = 

Source?: Base). Definitive Wa Mbugu (WM) overlaps with 08-P13, indicating that 

candidate sample is compositionally consistent with the Wa Mbugu. Samples 11-T23 and 

11-T24 frequently plot together, though they cannot represent the same lava flow as they 

were collected at the same site, separated by tens of meters of sediments and volcanics 

including the Main Humbu Tuff. 11-T23 (open red circle) is a geochemical split of the 

oriented paleomag sample 10-T21 (see Section 5.2). For most elements, 07-P21 and 12-

P3 are outliers. 
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5.2. Paleomagnetism 

Samples 10-T21 (Hajaro or Wa Mbugu basalt) and 10-T25 (definitive Wa 

Mbugu) were both sampled and analyzed paleomagnetically. Since 10-T21 represents the 

same unit as 11-T23 (composition described above in Section 5.1), this can help to better 

constraint the relative ages and compositions of these rocks in the Natron basin.  

The Wa Mbugu candidate sample 10-T21 has a Fisher mean direction of 173.7° 

declination, -9.5° inclination, and an α95 of 11.6°, n=3. (Figure 38). The maximum 

angular deviation (MAD) in 10-T21 was relatively low (< 5.2°, Table 6). Sample 10-T21 

had a single component of magnetization, though it was not fully demagnetized by 

100mT or 500°C, short of the measured Curie temperature (TC). The measurements of 

10-T21 are consistent with reversed polarity. Of the possible units that this could 

represent, 10-T21 would be most consistent with the Hajaro Basalt which also has a 

reversed polarity (Isaac, 1967), though this sample is compositionally unlike the Hajaro 

(see Section 6.2.1 for discussion).  

 

Table 6. Results of AF and thermal demagnetization. N is the number of data points per 

sample run. The maximum angular deviation (MAD) is more variable in 10-T25 than in 

10-T21. Declination and inclination are given in geographic coordinates. AF 

demagnetization steps are in milliTesla (mT). 
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Figure 38. Paleomagnetic orthogonal diagrams (Zijderveld, 1967) of 10-T21 (Hajaro or 

Wa Mbugu basalt). Solid (open) symbols are horizontal (vertical) projections 

respectively. Solid (open) symbols are projections onto the lower (upper) hemisphere. 

Note single component of magnetization and low maximum angular deviation. (A) and 

(B) are AF demagnetization, while (C) is thermal demagnetization. Sample is consistent 

with reversed polarity.  
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AF demagnetization of the Wa Mbugu sample10-T25 revealed at least two 

components of magnetization, though thermal demagnetization behavior was less stable 

and only one specimen was interpreted. This direction, however, was broadly consistent 

with the high-coercivity AF component.  

Sample 10-T25 has a Fisher mean direction of 97.6° declination and 19.0° 

inclination with an α95 of 27.9° (Figure 39). The MAD in 10-T25 was on average higher 

than in sample 10-T21 (upwards of 12.8°, Table 6).  

The AF and thermal results for sample 10-T21 are consistent with each other 

(Table 6), and confirmed with the α95 confidence value of 11.6°. The AF and thermal 

results of 10-T25 are much more variable, as evident by the α95 confidence value of 

27.9°.  

A dominant Curie temperature of 517°C derived from the χ(T) data from the 

heating curve (Figure 40A) suggests that titanomagnetite is the primary magnetic 

mineral in 10-T21. It should be noted that the sample was only heated to 600°C, and the 

presence or absence of higher-TC minerals such as hematite therefore cannot be 

determined. Hematite is likely considering the generally high degree of alteration of 

basalts in the region.  

For sample 10-T25 (Figure 40B), the χ(T) data (i.e. the heating and cooling 

curves) are highly irreversible. The data are consistent with an inversion of 

titanomaghemite to magnetite and ilmenite upon heating.  
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Figure 39. Paleomagnetic orthogonal diagrams (Zijderveld, 1967) of 10-T25 (Wa Mbugu 

basalt). Solid (open) symbols are horizontal (vertical) projections respectively. Note 

scatter and irregular demagnetization trends. (A) and (B) are AF demagnetization, while 

(C) and (D) are thermal demagnetization. Specimen C was not interpreted or included in 

the mean. The sample is consistent with transitional polarity. 
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Figure 40. Susceptibility (χ) as a function of temperature (T) for Natron basalts (A) 10-

T21 (Wa Mbugu candidate) and (B) 10-T25 (Wa Mbugu basalt). (A) The maximum 

temperature of heating was 600°C. The inflection point of the heating curve is 517°C. 

The cooling curve has lower susceptibility. The data are consistent with titanomagnetite. 

(B) The maximum temperature of heating for sample 10-T25 was 700°C. The data are 

consistent with titanomaghemite before heating, which converted to magnetite and 

ilmenite upon heating.  
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6. DISCUSSION 

6.1 Embagai  

Embagai is mostly nephelinite to phono-tephrite in composition, based on the 

results of this thesis and from Mollel’s (2007) study. Most Embagai lava samples 

analyzed for this study have high LOI values, which reflects significant alteration and 

limit the reliability of the XRF results for the analysis of primary igneous composition. 

As shown in the XRD results, calcite and zeolites (such as analcime) are also abundant, 

as a result of post-depositional processes. The abundance of calcite in certain samples 

may be related to a previous saline crater lake, localized fossil fumarole activity, or the 

alteration of carbonatite ash derived from nearby younger volcanoes such as Ol Doinyo 

Lengai and Kerimasi. The absence of feldspar and the presence of nepheline in the least 

altered samples is consistent with the nephelinitic composition of the lavas, though in 

some cases where both are missing and zeolites are abundant it is possible that zeolites 

replaced the primary phases. The augite phenocrysts are however more resistant to 

alteration and allow us to compare directly with phenocrysts found in Olduvai Gorge.  

6.1.1 Embagai and its relationship to Olduvai Gorge  

Embagai augite compositions (Figure 41A, FeO vs. MgO) are similar to those 

observed for Olduvai Bed II and some high-Mg Upper Bed I tuffs (Tables 7.1, 7.2, and 

7.3, data provided by McHenry). However, Embagai is most recently dated at 0.81 ± 0.02 

Ma to 1.16 ± 0.04 Ma (Mollel, 2007), with previous dates ranging from 0.5 ± 0.14 to 1.52 

± 0.03 Ma (Manega, 1993). Since Olduvai Tuff IF (the boundary between Beds I and II) 

is most recently dated at 1.803 ± 0.002 Ma (Deino, 2012), tuffs from Bed II and younger 

exposures at Olduvai are more likely candidates for correlation.   
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Figure 41. Augite phenocryst comparison plot of (A) FeO vs. MgO and (B) MnO vs. 

FeO: Embagai vs. Olduvai Bed I (open green triangles) and Bed II (open blue squares) 

(data provided by McHenry). (A) All augites follow a similar trend, with an inverse 

correlation between iron and magnesium (as expected for this solid solution). Caldera 

floor augites overlap both Beds I and II. (B) Embagai caldera floor augites plot close to 

Bed I, whereas eastern rim, northern rim, and western flank augites correspond with Bed 

II more closely. The ovals in both plots are drawn to reflect general grouping of Bed I 

and II populations and do not include outliers.  
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In the FeO vs. MgO plot for Embagai augite (Figure 41A), the western flank and 

northern rim are most similar to the high-Mg augites from Olduvai Bed II (10-15 wt. % 

MgO). Additionally, a second population of eastern rim augites overlaps with some high-

Mg Bed II augites. A plot of MnO vs. FeO (Figure 41B) better distinguishes Olduvai 

Bed I and II augite compositions. Embagai western flank and eastern rim augites are 

more similar to Bed II, which is consistent with the most recent dates. Northern rim 

augites appear to overlap portions of both Bed I and Bed II.  

Feldspar compositions from Embagai do not overlap with those from Olduvai Bed 

I or II (Figure 42). Feldspar is absent from most Embagai samples independent of the 

degree of alteration; these silica-undersaturated lavas are nepheline-rich instead. The few 

Embagai feldspars identified and analyzed are K-rich, which differs from the 

anorthoclase and plagioclase feldspars present in Olduvai Bed I and II tuffs. As K-

feldspar is observed in some of the more altered samples (alongside the zeolite mineral 

phillipsite), it is possible that they represent a secondary alteration phase rather than a 

primary igneous mineral (e.g. McHenry, 2009; 2010). However, less altered sample 13-

T32 likely contains primary igneous K-feldspar. It is unclear whether feldspars from 

Embagai represent an undiscussed bed or series of beds (e.g. Olduvai Beds III and 

above). It is possible that prevailing winds at the time of eruption did not encourage 

dispersal in the direction of Olduvai, thus limiting deposition of Embagai materials, or 

that Embagai did not erupt as explosively as its neighbors.  

Embagai oxide compositions are generally more Fe-rich and less Ti-rich than 

Olduvai Beds I and II, except for eastern rim oxides which overlap with Bed I (Figure 

43). 
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Figure 42. Feldspar phenocryst ternary plot: Embagai vs. Bed I and Bed II. Embagai 

feldspars are K-feldspar, where most Bed I and II feldspars range from anorthoclase to 

plagioclase. 

 

Figure 43. Oxide phenocryst comparison plot: Embagai vs. Olduvai Bed I and II. With 

the exception of the eastern rim, Embagai oxides are more Fe-rich than oxides from Beds 

I or Bed II, which are more Ti-rich.  



www.manaraa.com

86 
 

 

 



www.manaraa.com

87 
 

 

 



www.manaraa.com

88 
 

 

  



www.manaraa.com

89 
 

 

6.1.2 Comparison to Olduvai Bed III 

Microprobe data for augite, titanomagnetite, andradite, nepheline and perovskite 

of sample 02-T79 (Tuff IIIA, from Olduvai Locality 27) was used for comparison to 

Olduvai Bed III, (unpublished data, McHenry personal communication, 2014). Augite 

compositions are similar, with T79 overlapping significantly with most Embagai augites 

(Figure 44). Titanomagnetite compositions are very similar (Figure 45), with both 

Embagai and Bed III oxides following the trend of the northern rim and western flank, 

but not quite overlapping the eastern rim or caldera floor clusters. Andradite garnet 

compositions are also similar (Figure 46), though Bed III andradites are less than 15 wt 

% Ti, and thus not schorlomite or titanian andradites.  Based on the results given in 

Figures 44-46, it appears more likely that Embagai contributed ash to Olduvai Bed III.  

 

Figure 44. Augite phenocryst comparison of Embagai to Bed III (blue squares), showing 

significant overlap.  
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Figure 45. Titanomagnetite compositions for Embagai and Bed III (blue squares). The 

two show some overlap, especially for the northern rim.  

 

 

Figure 46. Andradite phenocryst comparison of Embagai to Bed III. Bed III andradites 

are not schormolite, but plot well with Embagai northern rim andradites. 
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6.1.3 Relationship to previously collected Embagai samples 

Mollel’s (2007) microprobe results from pyroxenes, nephelines, andradites, and 

oxides are compared with those of this thesis. The present study did not identify apatites, 

though rare feldspar, amphibole, melilite, perovskite, and sphene (titanite) was observed. 

It should be noted that Mollel’s sampling consisted of fewer samples (n=4) versus this 

thesis (n=16) and did not cover some geographic areas visited in the current study. 

Most Embagai samples that plot within the nephelinite/foidite region of the Total 

Alkali-Silica diagram are consistent with the results of Mollel (2007) (Figure 47A), 

though the addition of Na and K during zeolitic alteration could have affected the results 

for the most altered samples. In particular, the caldera floor and western flank samples 

most closely match Mollel’s (2007) samples. Mollel’s sample 03-EMB4 matches the 

caldera floor location of EM01 (Figure 10b). EMB-5 and EMB-6 overlap roughly with 

the eastern rim collection sites of this thesis EM07-09. EMB-3 overlaps with the northern 

rim samples EM10 and EM11. 

 6.1.4 Relationship to other NVH volcanoes  

Previously published augite compositions from Ngorongoro, Sadiman, Lemagrut, 

Olmoti, and Oldeani volcanoes (Mollel et al., 2008, 2009, 2011) are plotted against 

Embagai to compare the volcanic centers (Figure 48). Augite from the caldera floor of 

Embagai overlaps in part with Lemagrut. It should be noted, however, that Lemagrut is 

dated from 2.40 ± 0.01 to 2.22 ± 0.10 Ma (Mollel et al., 2011) much older than Embagai. 

Lemagrut is also comprised of olivine basalt (Pickering, 1964), a lava type not observed 

at Embagai. Some Sadiman augites plot close to those of Embagai’s eastern rim. Oldeani, 

Ngorongoro, and Olmoti augites are compositionally distinct from Embagai augites. 
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Figure 47. Comparisons to Mollel (2007) Embagai samples (blue squares). (A) Total 

alkali-silica diagram (bulk XRF geochemical data) with Mollel’s (2007) samples added. 

The samples correspond well, with the exception of a northern rim, which plots near 

picro-basalt. Samples plot largely as foidite (nephelinite), phono-tephrite, and tephra-

phonolite. (B) Comparison of Embagai augites (EPMA). Best correspondence for caldera 

floor samples. (C) Comparison of Embagai oxides (EPMA). Mollel’s samples correspond 

with northern rim oxides. (D) Comparison of Embagai garnets (EPMA). Mollel’s (2007) 

garnets correspond well with the general trend into titanian andradite. 
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Figure 48. Embagai augite (FeO vs. MgO), compared to other NVH volcanic sources 

(Ngorongoro, Sadiman, Lemagrut, Olmoti, and Oldeani; data from Mollel et al., 2008, 

2009, 2011) shows a decrease in Mg with an increase in Fe, as expected for this solid 

solution. Within the NVH, augites from the Embagai caldera floor are most 

compositionally similar to a second population from Olmoti and some from Lemagrut.  

 

It would be helpful to have augite and other phenocryst compositions from the 

volcanic centers of Loolmalasin, Olsirwa and adjacent Loguwinywo, which have been 

less studied (e.g. Mollel and Swisher, 2012). They could be a better match for Olduvai 

Upper Bed II than is Embagai, while Embagai may be the volcanic source for the 

younger beds (i.e. Bed III). 
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6.1.5 Alteration at Embagai 

Samples at Embagai represent several stages of alteration or contamination by 

calcite. Five samples with LOIs less than 7% represent the least altered. Four samples 

were moderately altered, with LOIs between 7-8%. Six samples were the most altered, 

with LOIs from 11-39%. The extremely high LOIs are for the calcite-rich samples, 

evident when plotted together with Ca (Figure 49). 

 

Figure 49. CaO vs. LOI for all Embagai samples, illustrating contamination by calcite. 

The least altered samples include those from the caldera floor.  

 

The range, degree, and type of alteration can be illustrated by relative element 

mobility (Figure 50). For each location, the least altered sample (01 for caldera floor, 05 

for western flank, 12 for northern rim, and T32 for eastern rim) was compared to the 

other samples from each setting. To test this, Zr was used first as the immobile element. 
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Note that the small amount of sample powdered in this study may affect whether the Zr 

concentration is representative of the bulk, since Zr is concentrated in accessory zircons 

and a larger sample size would thus be required to ensure a representative sample. 

Sample EM02 did not have any Zr, as it was mostly calcite. Other immobile elements, 

such as Ti and Al, do not vary as much as the more mobile alkali and alkali earth 

elements Ca, Na, and K. P also shows some variation away from the center line, though 

since P is mostly concentrated in the accessory mineral apatite, the small sample size 

analyzed may not have yielded P concentrations representative of the bulk. The plot 

indicates that Ca and Mn are enriched in most altered samples, especially in the eastern 

and northern rims, while Na, K, and P are typically depleted. The more altered of the two 

caldera floor samples appears to be depleted in all elements compared to the fresher 

sample; this is likely an artifact of non-representative Zr concentrations (or different 

initial Zr content) rather than an indication of alteration. 

Immobile elements Ti and Al were then used for comparison. For Ti, the same general 

patterns of enrichment and depletion are observed. Ca is enriched in the most altered 

samples, while Mn and P are also enriched and Na and K are depleted  (Figure 51). 

When Al is used as the immobile element, Ca and Mn are enriched and Na and K are 

depleted (Figure 52). 
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Figure 50. Relative element mobility of Embagai samples, nornalized to Zr. Each 

grouping represents one side of Embagai (i.e. caldera floor (X), western flank (green 

triangles), eastern rim (red squares), or northern rim (blue diamonds). Data is plotted 

against the least altered sample for each location. Scale is logarithmic. Based on this 

diagram, Ca is enriched in the most altered samples, whereas Na and K are depleted.  
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Figure 51. Relative element mobility of Embagai samples, normalized to Ti. Each 

grouping represents one side of Embagai (i.e. caldera floor (X), western flank (green 

triangles), eastern rim (red squares), and northern rim (blue diamonds). Data is plotted 

against the least altered sample for each location. Scale is logarithmic. Based on this 

diagram, Ca is enriched in the most altered samples, whereas Na and K are depleted. 
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Figure 52. Relative element mobility of Embagai samples, normalized to Al. Each 

grouping represents one side of Embagai (i.e. caldera floor (X), western flank (green 

triangles), eastern rim (red squares), and northern rim (blue diamonds). Data is plotted 

against the least altered sample for each location. Scale is logarithmic. Based on this 

diagram, Ca and Mn are enriched in the most altered samples, particularly the western 

flank and eastern rim, whereas Na and K are depleted, with Na depleted the most on the 

northern rim. 
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6.2 Natron basin and its role in defining tephrostratigraphy in the Olduvai/NVH 

region 

As noted earlier, the Natron basin is integral to constraining the timing of events 

in the greater NVH region. The proper placement of key lavas in the Peninj Group, in 

combination with radiometric dating, allows us to provide an improved stratigraphic and 

temporal framework for the hominid activities in the area.  

The samples in this study show that bulk geochemistry alone cannot differentiate 

between units of similar composition or close proximity. Analysis of individual minerals 

can help distinguish between units, as shown by McHenry (2005, et al. 2008, 2009, 

2012a, and 2012b). Establishing geochemical fingerprints works best with phenocrysts 

that are compositionally distinct between different units when fresh but do not change in 

composition during alteration.  

It can be reasonably argued, however, that based on major and minor element 

compositional similarities between 10-T24 (Wa Mbugu) and 08-P13 (Wa Mbugu 

candidate), that 08-P13 is consistent with the Wa Mbugu. It should be noted that these 

correlations cannot be definitively confirmed using the major and minor element bulk 

composition alone, though further work involving trace element geochemistry, isotopes, 

paleomagnetism, and/or detailed microprobe analysis of their phenocrysts could provide 

the needed context. 

6.2.1 Paleomagnetics of the Natron basin  

Sample 10-T21’s (Wa Mbugu candidate) Fisher mean direction of 173.7° 

declination (and well-defined demagnetization curves) strongly suggests that the sample 
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has reversed polarity. A significant amount of Natural Remanent Magnetization (NRM) 

remained after 100 mT or 500°C, so it is possible that a second component exists, but 

there is no indication of overlapping coercivity or unblocking spectra. It is theoretically 

possible that the sample may have undergone self-reversal (acquisition of 

thermoremanent magnetization in a direction 180° from the natural field during cooling). 

This could be a result of two ferromagnetic minerals with different Curie temperatures 

growing in close proximity to each other, creating magnetostatic energy of interaction, 

though this process is rare and generally occurs in one percent of all samples (Cox et al., 

1964). Without knowledge of the entire assemblage of magnetic minerals for the sample, 

it is difficult to determine whether this could create the observed reversed signal.   

Since 10-T21 appears to be reversed (consistent with the Matuyama chron and the 

Hajaro Basalt) and not normal, as expected for the Wa Mbugu, this sample could be 

paleomagnetically consistent with the Hajaro lava. If so, this can allow for better 

correlation in the field between the Moinik Ramp and Peninj Type Section (Maritinane). 

However, this correlation is unlikely because sample 10-T21 was collected from the same 

unit as 11-T23 (Figure 11B), which is compositionally unlike the Hajaro from its type 

section (Figure 37), Sample 11-T23 is also not compositionally similar to any confirmed 

Wa Mbugu sample (10-T24 or 08-P13).  

Assuming that the paleomagnetic interpretation for sample 10-T21 (reversed) is 

accurate, it cannot be confirmed as Wa Mbugu based on its polarity, and cannot be 

confirmed as Hajaro based on its geochemical composition. Thus, this sample could 

represent a new, previously undocumented lava flow. More field research would be 
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required to determine its lateral extent, position within the Humbu and Moinik 

succession, and potential correlative units. 

10-T25’s (Wa Mbugu) Fisher mean direction of 97.6° declination (Table 6, 

Figure 39), indicates a transitional field. 10-T24 had a relatively low LOI (2.02%, 

section 5.1), which indicates only minor alteration. The paleomagnetic data derived from 

a split of this sample, 10-T25, would thus be expected to be minimally affected by 

alteration. Yet the behavior of sample 10-T25, with multiple components obtainable from 

demagnetization and highly irreversible χ(T) data, is consistent with post-emplacement 

alteration. Susceptibility was consistent with the presence of titanomaghemite in 10-T25 

before heating (Figure 40B), and subsequent conversion of this titanomaghemite to 

magnetite and ilmenite upon heating suggests that the sample underwent low-temperature 

oxidation after emplacement. Partial or complete remagnetization of the sample could 

thus have occurred during alteration, resulting in the acquired values. 

A transitional field for 10-T25 (Wa Mbugu) is in conflict with the previously 

established normal polarity for this unit (Isaac and Curtis, 1974). Isaac and Curtis (1974) 

had previously postulated that the succession of lavas could be interpreted in two 

chronological fashions, one where the Wa Mbugu corresponds to the Olduvai normal 

event (favored at the time) and a second where the Wa Mbugu corresponds to the 

Jaramillo normal event (1.053 ± 0.006 Ma to 0.986 ± 0.005 Ma, Singer et al., 1999).  

There are several potential explanations for the apparent transitional field 

displayed by sample 10-T25.  It should be noted that this study had a small sample size 

(three specimens from one sample), much smaller than a traditional paleomagnetic study, 
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and it is impossible to accurately assess uncertainty and errors with only one sample. 

Structural rotation of the basalt unit in the field during cooling is possible, given the high 

level of rift-related faulting in the region (Luque et al., 2009). The quality of the sample 

collected and the method of collection are also important. Uncertainty based on 

orientation in the field could be up to 20°. Many lava samples from the Peninj area are 

zeolitized, which indicates significant post-displacement alteration, which may have 

affected the magnetic mineralogy (titanomagnetite altering to titanomaghemite). This is 

further reinforced by the samples’ reaction to heat during thermal demagnetization.  

However, an adjacent sample from the same unit (10-T24) had a LOI of only 2.02%, 

which is not consistent with significant alteration.  

Manega (1993) stated that the normal “events” observed by Thouveny and Taieb 

(1986, 1987) in the Moinik Formation located stratigraphically above the Wa Mbugu 

may have been the artifact of altered and oxidized sediments. Sediments that recorded 

normal polarity during the Brunhes normal event may have been affected by chemical 

remanent magnetization during diagenesis (Manega, 1993). This may be a concern for the 

Natron basin, as its local paleomagnetic record (Thouveny and Taieb, 1986) does not 

appear to match global records (Mankinen and Dalrymple, 1978; Berggren et al, 1995) 

and continues to yield inconsistent radiometric dates (Luque et al., 2009). Whether this is 

a factor in the recording of accurate paleomagnetic directions in the underlying Wa 

Mbugu basalt remains unclear. 

Should the polarity of the Wa Mbugu (10-T25) obtained in this thesis be accurate, 

this could conflict with the paleomagnetic results of Isaac and Curtis (1974) and 

Thouveny and Taieb (1986, 1987), who found the unit to be of normal polarity. The 
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“olivine basalt,” later named Wa Mbugu basalt, was at first considered anomalous 

relative to the paleomagnetic chronology established at the time (K-Ar range of 1.4-1.6 

Ma: Isaac, 1967). Although it was considered “stratigraphically consistent in relation to 

the other values,” Isaac deduced that it was “higher than would be generally expected on 

archaeological and paleontological grounds” (i.e., based on the placement of the 

Acheulean stone industry and the Australopithecus mandible which are bracketed by the 

Intra-Moinik (~1.2-1.3 Ma) and the Sambu (~2.0 Ma) lavas above and below (Figure 9)). 

The latest 
40

Ar/
39

Ar date of 1.19 Ma (Deino, 2006) for the Wa Mbugu basalt places it 

within the range of two of three previous K-Ar dates: 1.0-1.5 and 0.96-1.21 Ma (Isaac 

and Curtis, 1974) and MacIntyre et al.’s (1974) K-Ar result of 0.91-1.21 Ma (indirect). If 

these dates constrain the Wa Mbugu to the short Cobb Mountain normal excursion (1.190 

- 1.215 Ma, Channell et al., 2002; 1.12 ± 0.02 Ma; Mankinen et al., 1978), a true 

transitional polarity places it on the cusp of this brief event, but perhaps not within it. If 

the sample corresponds to the Jaramillo normal event, it is still possible to have a 

transitional polarity, since recent 
40

Ar/
39

Ar studies have identified transitional polarity 

sections and a brief reverse polarity section within the Jaramillo (Santa Rosa, Punaruu 

events: Singer et al., 1999; Guo et al., 2002). 

Based on this sample alone, it is impossible to determine whether this transitional 

polarity (as opposed to the previously established normal polarity) is characteristic of the 

Wa Mbugu lava, and additional samples of established Wa Mbugu and potential Wa 

Mbugu candidates would be required for testing. Improved paleomagnetic studies, in 

addition to improved geochemical fingerprinting, could provide higher resolution 

stratigraphic and temporal constraints for units in this region.   
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7. CONCLUSIONS 

7.1 Embagai 

Embagai caldera is dominated by nephelinite at the locations sampled. Primary 

mineral assemblages include augite, rare amphibole, nepheline, titanomagnetite, 

andradite/schorlomite garnet, perovskite, and sphene. The secondary mineral 

assemblages include K-feldspar, calcite (a major source of contamination), and zeolites 

including phillipsite and chabazite.  

Samples experienced a high level of alteration, as demonstrated by high LOI 

values. Relative element mobility indicates enrichment in Ca and depletion in Na for 

most altered samples. The presence of both lavas and tuffs indicates both explosive and 

effusive eruptions. 

 While phenocryst composition comparisons involving augite show some 

similarities between Upper Olduvai Bed II tephra and Embagai caldera, particularly for 

Embagai’s northern rim and caldera floor, other minerals are less consistent. Feldspar is 

absent in most Embagai samples (which are instead dominated by nepheline), and are K-

rich where present, making these lavas a poor match for the plagioclase and anorthoclase 

bearing tuffs of Olduvai Beds I and II.  

Tuff IIIA (from Olduvai Bed III) is more mineralogically consistent with 

Embagai, with nepheline, Mg-rich augite, and rare feldspar. Titanomagnetites and 

andradites also show similar compositions for both Embagai and Tuff IIIA. With further 

geochemical analysis and improved dating of samples from this volcanic source, it may 

be possible to link Embagai to Olduvai Bed III. 
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7.2 Natron basin  

Bulk geochemical data for the Natron basalts shows a spread of compositions. 

The presumed “Wa Mbugu/Humbu source” lava samples 07-P21 and 12-P3 are the most 

geochemically distinct of the basalts, and are thus most likely unrelated to the Wa Mbugu 

basalt. The source volcano is also compositionally distinct from the Hajaro lava.  

This study of the Natron basin samples demonstrates that bulk major and minor 

elements alone are insufficient for geochemical fingerprinting of lavas. This is most 

evident in the case of samples 11-T23 and 11-T24, two lavas collected on the Moinik 

ramp. While they are geochemically similar, they are separated by tens of meters of 

continuous section. A detailed study of their phenocryst mineralogy, together with bulk 

trace element and isotopic analysis, could better differentiate their compositions. 

The reversed polarity of Wa Mbugu candidate sample 10-T21 does not match the 

expected normal polarity of the unit. This unit is also unlikely to be the Hajaro basalt, for 

while this unit has reversed polarity its geochemical composition does not match the 

definitive Hajaro samples (07-P3 and 11-T17). This leaves the possibility that sample 10-

T21 is neither Wa Mbugu nor Hajaro, and represents different lavas entirely.  

The definitive Wa Mbugu sample (10-T25) appears to record a transitional 

direction rather than the expected normal polarity, which may be due to rotation in the 

unit due to rift-related faulting or post-emplacement alteration of the lava. It is also 

possible that there is a brief transitional period within one the normal events to which the 

Wa Mbugu is being attributed (e.g. the Jaramillo). If these results are accurate, it is 
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possible that the paleomagnetic record for the Natron basin may need to be revised, based 

on more recent dating results by Deino (2006) and future studies.  
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